1.
Adleman, L., Kompella, K.: Using smoothness to achieve parallelism. In: 20th STOC, pp. 528–538 (1988)
2.
Asokan, N., Shoup, V., Waidner, M.: Optimistic Fair Exchange of Digital Signatures (Extended Abstract). In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg (1998)
CrossRef3.
Backes, M., Pfitzmann, B., Waidner, M.: A general composition theorem for secure reactive systems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 336–354. Springer, Heidelberg (2004)
CrossRef4.
Beaver, D., Goldwasser, S.: Multiparty Computation with Faulty Majority. In: 30th FOCS, pp. 503–513 (1990)
5.
Benaloh, J., de Mare, M.: One-Way Accumulators: A Decentralized Alternative to Digital Signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994)
6.
Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.: A Fair Protocol for Signing Contracts. IEEE Transactions on Information Theory 36(1), 40–46 (1990)
CrossRef7.
Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computation. In: 20th STOC, pp. 1–10 (1988)
8.
Blum, M.: How to exchange (secret) keys. ACM Transactions on Computer Systems 1(2), 175–193 (1983)
CrossRef9.
Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number generator. SIAM Journal on Computing 15(2), 364–383 (May 1986)
MATHCrossRefMathSciNet10.
Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)
CrossRef11.
Boneh, D., Naor, M.: Timed commitments (extended abstract). In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000)
CrossRef12.
Cachin, C., Camenisch, J.: Optimistic Fair Secure Computation. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000)
CrossRef13.
Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols. Journal of Cryptology 13(1), 143–202 (Winter 2000)
MATHCrossRefMathSciNet14.
Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. Electronic Colloquium on Computational Complexity (ECCC) TR01- 016 (2001); Previous version, A unified framework for analyzing security of protocols, availabe at the ECCC archive TR01-016. Extended abstract in FOCS 2001
15.
Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. Cryptology ePrint Archive, Report 2000/067 (2005); Revised version of [14]
16.
Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)
CrossRef17.
Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally Composable Twoparty and Multi-party Secure Computation. In: 34th STOC (2002)
18.
Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: 20th STOC, pp. 11–19 (1988)
19.
Cleve, R.: Limits on the security of coin flips when half the processors are faulty. In: Proceedings of the 18th Annual ACM Symposium on Theory of Computing (STOC 1986), pp. 364–369 (1986)
20.
Cramer, R.: Modular Design of Secure yet Practical Cryptographic Protocols. Ph.D. Thesis. CWI and University of Amsterdam (1997)
21.
Cramer, R., Damgård, I., Nielsen, J.: Multiparty Computation from Threshold Homomorphic Encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)
CrossRef22.
Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)
23.
Damgård, I.: Practical and Provably Secure Release of a Secret and Exchange of Signatures. Journal of Cryptology 8(4), 201–222 (1995)
MATHCrossRef24.
Damgård, I., Jurik, M.: Efficient protocols based probabilistic encryptions using composite degree residue classes. In: Research Series RS-00-5, BRICS, Department of Computer Science, University of Aarhus (2000)
25.
Damgård, I., Nielsen, J.: Universally Composable Efficient Multiparty Computation from Threshold Homomorphic Encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)
CrossRef26.
Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. SIAM J. on Comput. 30(2), 391–437 (2000); An earlier version appeared in 23rd ACM Symp. on Theory of Computing, pp. 542–552 (1991)
MATHCrossRefMathSciNet27.
Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28(6), 637–647 (1985)
CrossRefMathSciNet28.
Fitzi, M., Gottesman, D., Hirt, M., Holenstein, T., Smith, A.: Detectable Byzantine Agreement Tolerating Faulty Majorities (from scratch). In: 21st PODC, pp. 118–126 (2002)
29.
Fouque, P., Poupard, G., Stern, J.: Sharing decryption in the context of voting or lotteries. In: Proceedings of Financial Crypto 2000 (2000)
30.
Galil, Z., Haber, S., Yung, M.: Cryptographic Computation: Secure Faulttolerant Protocols and the Public-Key Model. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 135–155. Springer, Heidelberg (1988)
31.
Garay, J., Jakobsson, M.: Timed Release of Standard Digital Signatures. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 168–182. Springer, Heidelberg (2003)
CrossRef32.
Garay, J., MacKenzie, P., Prabhakaran, M., Yang, K.: Resource Fairness and Composability of Cryptographic Protocols. In: Cryptology ePrint Archive,
http://eprint.iacr.org/2005/370
33.
Garay, J., MacKenzie, P., Yang, K.: Strengthening Zero-Knowledge Protocols using Signatures. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 177–194. Springer, Heidelberg (2003); Full version in Cryptology ePrint Archive (2003),
http://eprint.iacr.org/2003/037
; To appear in Journal of Cryptology
CrossRef34.
Garay, J., MacKenzie, P., Yang, K.: Efficient and Universally Composable Committed Oblivious Transfer and Applications. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 297–316. Springer, Heidelberg (2004)
CrossRef35.
Garay, J., MacKenzie, P., Yang, K.: Efficient and Secure Multi-Party Computation with Faulty Majority and Complete Fairness. In: Cryptology ePrint Archive,
http://eprint.iacr.org/2004/019
36.
Garay, J., Pomerance, C.: Timed Fair Exchange of Standard Signatures. In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 190–207. Springer, Heidelberg (2003)
CrossRef37.
Goldreich, O.: Secure Multi-Party Computation (Working Draft, Version 1.2) (March 2000), Available from:
http://www.wisdom.weizmann.ac.il/~oded/pp.html
38.
Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game – A Completeness Theorem for Protocols with Honest Majority. In: 19th ACM Symposium on the Theory of Computing, pp. 218–229 (1987)
39.
Goldwasser, S., Levin, L.: Fair computation of general functions in presence of immoral majority. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 77–93. Springer, Heidelberg (1991)
40.
Goldwasser, S., Lindell, Y.: Secure ComputationWithout Agreement. Journal of Cryptology 18(3), 247–287 (2005)
MATHCrossRefMathSciNet41.
Hofheinz, D., Müller-Quade, J.: A Synchronous Model for Multi-Party Computation and Incompleteness of Oblivious Transfer. In: Cryptology ePrint Archive (2004),
http://eprint.iacr.org/2004/016
42.
Lepinski, M., Micali, S., Peikert, C., Shelat, A.: Completely fair SFE and coalition-safe cheap talk. In: 23rd PODC, pp. 1–10 (2004)
43.
Lindell, Y.: General Composition and Universal Composability in Secure Multi- Party Computation. In: FOCS 2003 (2003)
44.
MacKenzie, P., Yang, K.: On Simulation Sound Trapdoor Commitments. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 382–400. Springer, Heidelberg (2004)
CrossRef45.
Nielsen, J.B.: On Protocol Security in the Cryptographi Model. Ph.D. Thesis. Aarhus University (2003)
46.
Paillier, P.: Public-key cryptosystems based on composite degree residue classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)
47.
Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)
48.
Pfitzmann, B., Waidner, M.: Composition and Integrity Preservation of Secure Reactive Systems. In: ACM Conference on Computer and Communications Security (CSS), pp. 245–254 (2000)
49.
Pinkas, B.: Fair Secure Two-Party Computation. In: Eurocrypt 2003, pp. 87–105 (2003)
50.
Prabhakaran, M., Sahai, A.: New notions of security: Achieving universal composability without trusted setup. Cryptology ePrint Archive, Report 2004/139; Extended abstract in Proc. 36th STOC, pp. 242–251 (2004)
51.
Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty Protocols with Honest Majority. In: 21st STOC, pp. 73–85 (1989)
52.
Shoup, V.: A Computational Introduction to Number Theory and Algebra. Preliminary book, Available at,
http://shoup.net/ntb/
53.
Sorenson, J.: A Sublinear-Time Parallel Algorithm for Integer Modular Exponentiation. Available from:
http://citeseer.nj.nec.com/sorenson99sublineartime.html
54.
Yao, A.: Protocols for Secure Computation. In: FOCS 1982, pp. 160–164 (1982)
55.
Yao, A.: How to generate and exchange secrets. In: FOCS 1986, pp. 162–167 (1986)