Learning from Ambiguously Labeled Examples

* Final gross prices may vary according to local VAT.

Get Access


Inducing a classification function from a set of examples in the form of labeled instances is a standard problem in supervised machine learning. In this paper, we are concerned with ambiguous label classification (ALC), an extension of this setting in which several candidate labels may be assigned to a single example. By extending three concrete classification methods to the ALC setting and evaluating their performance on benchmark data sets, we show that appropriately designed learning algorithms can successfully exploit the information contained in ambiguously labeled examples. Our results indicate that the fundamental idea of the extended methods, namely to disambiguate the label information by means of the inductive bias underlying (heuristic) machine learning methods, works well in practice.