Chapter

Artificial Neural Networks: Biological Inspirations – ICANN 2005

Volume 3696 of the series Lecture Notes in Computer Science pp 371-378

Spatio-Temporal Organization Map: A Speech Recognition Application

  • Zouhour Neji Ben SalemAffiliated withCristal Laboratory: Artificial Intelligence Unit, National School of Computer Sciences, University Campus of Manouba
  • , Feriel Mouria-bejiAffiliated withCristal Laboratory: Artificial Intelligence Unit, National School of Computer Sciences, University Campus of Manouba
  • , Farouk KamounAffiliated withCristal Laboratory: Artificial Intelligence Unit, National School of Computer Sciences, University Campus of Manouba

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The temporal dimension is very important to be considered in many cognitive tasks involving a decision making or a behavior in response to spatio-temporal stimuli, such as vision, speech and signal processing. Thus, the capacity of encoding, recognizing, and recalling spatio-temporal patterns is one of the most crucial features of any intelligent system either artificial or biologic. If some connexionnist or hybrid model integrates the temporal data as spatial input, few other models take them into account together internally either in training or in architecture. Temporal Organization Map TOM is one of the latest types. In this paper, we propose a model gathering saptio-temporal data coding, representation and processing based on TOM map, and yielding to a Spatio-Temporel Organization Map (STOM). For spatio-temporal data coding, we use the domain of complex numbers to represent the two dimensions together. STOM architecture is the same as TOM, however, training is ensured by the spatio-temporal Kohonen algorithm to make it able to manage complex input.