A Quantum-Inspired Genetic Algorithm for Scheduling Problems

Purchase on Springer.com

$29.95 / €24.95 / £19.95*

* Final gross prices may vary according to local VAT.

Get Access

Abstract

This paper is the first to propose a quantum-inspired genetic algorithm (QGA) for permutation flow shop scheduling problem to minimize the maximum completion time (makespan). In the QGA, Q-bit based representation is employed for exploration in discrete 0-1 hyperspace by using updating operator of quantum gate as well as genetic operators of Q-bit. Meanwhile, the Q-bit representation is converted to random key representation, which is then transferred to job permutation for objective evaluation. Simulation results and comparisons based on benchmarks demonstrate the effectiveness of the QGA, whose searching quality is much better than that of the famous NEH heuristic.