Super-template Generation Using Successive Bayesian Estimation for Fingerprint Enrollment

  • Choonwoo Ryu
  • Youngchan Han
  • Hakil Kim
Conference paper

DOI: 10.1007/11527923_74

Part of the Lecture Notes in Computer Science book series (LNCS, volume 3546)
Cite this paper as:
Ryu C., Han Y., Kim H. (2005) Super-template Generation Using Successive Bayesian Estimation for Fingerprint Enrollment. In: Kanade T., Jain A., Ratha N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg

Abstract

This paper proposes an algorithm for generating a super-template from multiple fingerprint impressions in fingerprint enrollment for the purpose of increasing recognition accuracy. The super-template is considered as a single fingerprint template which contains highly likely true minutiae based on multiple fingerprint images. The proposed algorithm creates the super-template, in which the credibility of each minutia is updated by applying a successive Bayesian estimation (SBE) to a sequence of templates obtained from input fingerprint images. Consequently, the SBE assigns a higher credibility to frequently detected minutiae and a lower credibility to minutiae that are rarely found from the input templates. Likewise, the SBE is able to estimate the credibility of the minutia type (ridge ending or bifurcation). Preliminary experiments demonstrate that, as the number of fingerprint images increases, the proposed algorithm can improve the recognition performance, while keeping the processing time and memory storage required for the super-template almost constant.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Choonwoo Ryu
    • 1
  • Youngchan Han
    • 1
  • Hakil Kim
    • 1
  1. 1.School of Information & Communication EngineeringInha University, Biometrics Engineering Research CenterKorea

Personalised recommendations