International Conference on Integer Programming and Combinatorial Optimization

IPCO 2005: Integer Programming and Combinatorial Optimization pp 35-50

Approximate Min-max Relations for Odd Cycles in Planar Graphs

  • Samuel Fiorini
  • Nadia Hardy
  • Bruce Reed
  • Adrian Vetta
Conference paper

DOI: 10.1007/11496915_4

Volume 3509 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Fiorini S., Hardy N., Reed B., Vetta A. (2005) Approximate Min-max Relations for Odd Cycles in Planar Graphs. In: Jünger M., Kaibel V. (eds) Integer Programming and Combinatorial Optimization. IPCO 2005. Lecture Notes in Computer Science, vol 3509. Springer, Berlin, Heidelberg

Abstract

We study the ratio between the minimum size of an odd cycle vertex transversal and the maximum size of a collection of vertex-disjoint odd cycles in a planar graph. We show that this ratio is at most 10. For the corresponding edge version of this problem, Král and Voss [7] recently proved that this ratio is at most 2; we also give a short proof of their result.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Samuel Fiorini
    • 1
    • 2
  • Nadia Hardy
    • 3
  • Bruce Reed
    • 3
  • Adrian Vetta
    • 3
  1. 1.GERADMontreal, QuebecCanada
  2. 2.Université Libre de BruxellesBrusselsBelgium
  3. 3.McGill UniversityMontreal, QuebecCanada