Joint Sensor Selection and Data Routing in Sensor Networks


We propose a new joint sensor selection and routing algorithm, which selects a set of sensor nodes (sensing nodes) in a sensor network to take measurements, and determines a set of paths connecting the sensing nodes to the sink node. Our objective is to maximize the network lifetime, while satisfying the data precision required by the user. We first develop a multi-objective optimization model for this problem and design the near-optimal OPT-RE algorithm based on this model for network lifetime maximization. Next, we design a low complexity heuristic called SP-RE. SP-RE first labels the links between the nodes with a metric which trades off the residual energies of the transmitting and receiving nodes with the required transmission and reception energy. Then, SP-RE calculates the shortest paths from all nodes to the sink, and identifies the node which is closest to the sink as a sensing node. This process is repeated until the required data precision is satisfied. We demonstrate by simulations that SP-RE and OPT-RE can increase the network lifetime several orders of magnitude compared to naive approaches.