Skip to main content

Visualization and Segmentation Techniques in 3D Ultrasound Images

  • Chapter
  • 1053 Accesses

Part of the book series: Advances in Pattern Recognition ((ACVPR))

Summary

Although ultrasonography is an important cost-effective imaging modality, technical improvements are needed before its full potential is realized for accurate and quantitative monitoring of disease progression or regression. 2D viewing of 3D anatomy, using conventional ultrasonography limits our ability to quantify and visualize pathology and is partly responsible for the reported variability in diagnosis and monitoring of disease progression. Efforts of investigators have focused on overcoming these deficiencies by developing 3D ultrasound imaging techniques using existing conventional ultrasound systems, reconstructing the information into 3D images, and then allowing interactive viewing of the 3D images on inexpensive desktop computers. In addition, the availability of 3D ultrasound images has allowed the development of automated and semi-automated segmentation techniques to quantify organ and pathology volume for monitoring of disease. In this chapter, we introduce the basic principles of 3D ultrasound imaging as well as its visualization techniques. Then, we describe the use of 3D ultrasound in interventional procedures and discuss applications of 3D segmentation techniques of the prostates, needles, and seeds used in prostate brachytherapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fenster, A., Downey, D.B., Cardinal, H.N.: Topical review: Three-dimensional ultrasound imaging. Phys. Med. Biol. 46 (2001) R67–R99

    Article  Google Scholar 

  2. Nelson, T.R., Downey, D.B., Pretorius, D.H., Fenster, A.: Three-dimensional ultrasound. Lippincott-Raven, Philadelphia (1999)

    Google Scholar 

  3. Fenster, A., Downey, D.B.: Three-dimensional ultrasound imaging: A review. EEE Engineering in Medicine and Biology 15 (1996) 41–51

    Google Scholar 

  4. Smith, S.W., Trahey, G.E., von Ramm, O.T.: Two-dimensional arrays for medical ultrasound. Ultrason Imaging 14 (1992) 213–33

    Article  Google Scholar 

  5. Tvon Ramm, O.T., Smith, S.W., Pavy, H.G.J.: High-speed ultrasound volumetric imaging system. part ii. parallel processing and image display. IEEE Trans. Ultrason Ferroelec Freq. Contr. 38 (1991) 109–115

    Google Scholar 

  6. Downey, D.B., Fenster, A.: Three-dimensional power doppler detection of prostatic cancer. Am. J. Roentgenol 165 (1995a) 741

    Google Scholar 

  7. Downey, D.B., Fenster, A.: Vascular imaging with a three-dimensional power doppler system. Am. J. Roentgenol 165 (1995b) 665–8

    Google Scholar 

  8. Silverman, R.H., Rondeau, M.J., Lizzi, F.L., Coleman, D.J.: Three-dimensional high-frequency ultrasonic parameter imaging of anterior segment pathology. Ophthalmology 102 (1995) 837–43

    Google Scholar 

  9. Guo, Z., Fenster, A.: Three-dimensional power doppler imaging: a phantom study to quantify vessel stenosis. Ultrasound Med. Biol. 22 (1996) 1059–69

    Article  Google Scholar 

  10. Picot, P.A., Rickey, D.W., Mitchell, R., Rankin, R.N., Fenster, A.: Three-dimensional color doppler imaging of the carotid artery. In: SPIE Proceedings: Image Capture, Formatting and Display. Volume 1444., Atlanta, GA (1991) 206–213

    Google Scholar 

  11. Picot, P.A., Rickey, D.W., Mitchell, R., Rankin, R.N., Fenster, A.: Three-dimensional color doppler imaging. Ultrasound Med. Biol. 19 (1993) 95–104

    Article  Google Scholar 

  12. Pretorius, D.H., Nelson, T.R., Jaffe, J.S.: Three-dimensional sonographic analysis based on color flow doppler and grayscale image data: a preliminary report. J. Ultrasound Med. 11 (1992) 225–32

    Google Scholar 

  13. Bamber, J.C., Eckersley, R.J., Hubregtse, P., Bush, N.L., Bell, D.S., Crawford, D.C.: Data processing for 3D ultrasound visualization of tumour anatomy and blood flow. SPIE 1808 (1992) 651–663

    Google Scholar 

  14. Guo, Z., Moreau, M., Rickey, D.W., Picot, P.A., Fenster, A.: Quantitative investigation of in vitro flow using three-dimensional color doppler ultrasound. Ultrasound Med. Biol. 21 (1995) 807–16

    Article  Google Scholar 

  15. Cardinal, H.N., Gill, J.D., Fenster, A.: Analysis of geometrical distortion and statistical variance in length, area, and volume in a linearly scanned 3d ultrasound image. IEEE Transactions on Medical Imaging 19 (2000) 632–651

    Article  Google Scholar 

  16. Delabays, A., Pandian, N.G., Cao, Q.L., Sugeng, L., Marx, G., Ludomirski, A., Schwartz, S.L.: Transthoracic real-time three-dimensional echocardiography using a fanlike scanning approach for data acquisition: methods, strengths, problems, and initial clinical experience. Echocardiography 12 (1995) 49–59

    Google Scholar 

  17. Downey, D.B., Fenster, A.: Three-dimensional orbital ultrasonography. Can. J Ophthalmol 30 (1995c) 395–8

    Google Scholar 

  18. Elliot, T.L., Downey, D.B., Tong, S., McLean, C.A., Fenster, A.: Accuracy of prostate volume measurements in vitro using three-dimensional ultrasound. Acad. Radiol. 3 (1996) 401–6

    Google Scholar 

  19. Tong, S., Downey, D.B., Cardinal, H.N., Fenster, A.: A three-dimensional ultrasound prostate imaging system. Ultrasound Med. Biol. 22 (1996) 735–46

    Article  Google Scholar 

  20. Chin, J.L., Downey, D.B., Mulligan, M., Fenster, A.: Three-dimensional transrectal ultrasound guided cryoablation for localized prostate cancer in nonsurgical candidates: a feasibility study and report of early results. J. Urol. 159 (1998) 910–4

    Google Scholar 

  21. Tong, S., Cardinal, H.N., Downey, D.B., Fenster, A.: Analysis of linear, area and volume distortion in 3d ultrasound imaging. Ultrasound Med. Biol. 24 (1998) 355–73

    Google Scholar 

  22. Brinkley, J.F., McCallum, W.D., Muramatsu, S.K., Liu, D.Y.: Fetal weight estimation from lengths and volumes found by three-dimensional ultrasonic measurements. J. Ultrasound Med. 3 (1984) 163–8

    Google Scholar 

  23. King, D.L., King, D.J., Shao, M.Y.: Three-dimensional spatial registration and interactive display of position and orientation of real-time ultrasound images. J. Ultrasound Med. 9 (1990) 525–32

    Google Scholar 

  24. Bonilla-Musoles, F., Raga, F., Osborne, N.G., Blanes, J.: Use of three-dimensional ultrasonography for the study of normal and pathologic morphology of the human embryo and fetus: preliminary report. J. Ultrasound Med. 14 (1995) 757–65

    Google Scholar 

  25. Detmer, P.R., Bashein, G., Hodges, T., Beach, K.W., Filer, E.P., Burns, D.H., Strandness, D.E.J.: Three-dimensional ultrasonic image feature localization based on magnetic scanhead tracking: in vitro calibration and validation. Ultrasound Med. Biol. 20 (1994) 923–36

    Article  Google Scholar 

  26. Ganapathy, U., Kaufman, A.: 3d acquisition and visualization of ultrasound data. In: SPIE Proc. Of Visualization in biomedical computing SPIE. Volume 1808. (1992) 535–545

    Google Scholar 

  27. Gilja, O.H., Detmer, P.R., Jong, J.M., Leotta, D.F., Li, X.N., Beach, K.W., Martin, R., Strandness, D.E.J.: Intragastric distribution and gastric emptying assessed by three-dimensional ultrasonography. Gastroenterology 113 (1997) 38–49

    Google Scholar 

  28. Hughes, S.W., D’Arcy, T.J., Maxwell, D.J., Chiu, W., Milner, A., Saunders, J.E., Sheppard, R.J.: Volume estimation from multiplanar 2D ultrasound images using a remote electromagnetic position and orientation sensor. Ultrasound Med. Biol. 22 (1996) 561–72

    Article  Google Scholar 

  29. Leotta, D.F., Detmer, P.R., Martin, R.W.: Performance of a miniature magnetic position sensor for three-dimensional ultrasound imaging. Ultrasound Med. Biol. 23 (1997) 597–609

    Article  Google Scholar 

  30. Nelson, T.R., Pretorius, D.H.: Visualization of the fetal thoracic skeleton with three-dimensional sonography: a preliminary report. Am. J. Roentgenol 164 (1995) 1485–8

    Google Scholar 

  31. Tuthill, T.A., Krucker, J.F., Fowlkes, J.B., Carson, P.L.: Automated three-dimensional us frame positioning computed from elevational speckle decorrelation. Radiology 209 (1998) 575–82

    Google Scholar 

  32. Chin, J.L., Downey, D.B., Onik, G., Fenster, A.: Three-dimensional prostate ultrasound and its application to cryosurgery. Tech. Urol. 2 (1996) 187–93

    Google Scholar 

  33. Kirbach, D., Whittingham, T.A.: Three-dimensional ultrasound-the Kretztechnik-Voluson approach. European J. Ultrasound 1 (1994) 85–89

    Google Scholar 

  34. Zosmer, N., Jurkovic, D., Jauniaux, E., Gruboeck, K., Lees, C., Campbell, S.: Selection and identification of standard cardiac views from three-dimensional volume scans of the fetal thorax. J Ultrasound. Med. 15 (1996) 25–32

    Google Scholar 

  35. Levoy, M.: Volume rendering, a hybrid ray tracer for rendering polygon and volume data. IEEE Computer Graphics and Applications 10 (1990) 33–40

    Article  Google Scholar 

  36. Garfinkel, L., Mushinski, M.: Cancer incidence, mortality, and survival trend in four leading sites. Stat. Bull. 75 (1994) 19–27

    Google Scholar 

  37. Nag, S.: Principles and Practice of Brachytherapy. Futura Publishing Company, Inc, Amonk, NY (1997)

    Google Scholar 

  38. Richard, W.D., Grimmell, C.K., Bedigian, K., Frank, K.J.: A method for 3D prostate imaging using transrectal ultrasound. Comput. Med. Imaging Graphics 17 (1993) 73–79

    Google Scholar 

  39. Richard, W.D., Keen, C.G.: A method for 3D prostate imaging using transrectal ultrasound. Comput. Med. Imaging Graphics 20 (1996) 131–140

    Google Scholar 

  40. Aarnink, R.G., Giesen, R.J.B., Huynen, A.L., Debruyne, F.M.J., Wijkstra, H.: Automated prostate volume determination. In: Proc. of IEEE Eng. Med. Biol. Soc. Volume 14. (1992) 2146–2147

    Google Scholar 

  41. Aarnink, R.G., Giesen, R.J.B., Huynen, A.L., De la Rosette, J.J., Debruyne, F.M.J., Wijkstra, H.: A practical clinical method for contour determination in ultrasonographic prostate images. Ultrasound Med. Biol. 20 (1994) 705–717

    Article  Google Scholar 

  42. Aarnink, R., Giesen, R.J.B., Huynen, A.L., De la Rosette, J.J., Debruyne, F.M.J., Wijkstra, H.: Automated prostate volume determination with ultrasonographic imaging. J. Urol. 153 (1995) 1549–1554

    Google Scholar 

  43. Aarnink, R.G., Giesen, R.J.B., Huynen, A.L., De la Rosette, J.J., Debruyne, F.M.J., Wijkstra, H.: Edge detection in prostatic ultrasound images using integrated edges maps. Ultrasounics 36 (1998) 635–642

    Google Scholar 

  44. Liu, Y.J., Ng, W.S., Teo, M.Y., Lim, H.C.: Computerised prostate boundary estimation of ultrasound images using radial bas-relief method. Med. Biol. Eng. Comput. 35 (1997) 445–454

    Google Scholar 

  45. Kwoh, C.K., Teo, M.Y., Ng, W.S., Tan, S.N., Jones, L.M.: Outlining the prostate boundary using the harmonics method. Med. Biol. Eng. Comput. 36 (1998) 768–771

    Google Scholar 

  46. Pathak, S.D., Aanink, R.G., De la Rosette, J.J., Chalara, V., Wijkstra, H., Haryror, D.R., Debruyne, F.M.J., Kim, Y.: Quantitative three-dimensional transrectal ultrasound (TRUS) for prostate imaging. In: Proc. of SPIE. Volume 3335. (1998) 83–92

    Google Scholar 

  47. Pathak, S.D., Chalara, V., Haryror, D.R., Kim, Y.: Edge-guided delineration of the prostate in transrectal ultrasound images. In: Proc. of the 1st Joint Meeting of the Biology Engineering Society and IEEE Engineering in Medicine and Biology Society, Atlanta, GA (1999) 1056

    Google Scholar 

  48. Pathak, S.D., Chalara, V., Haryror, D.R., Kim, Y.: Edge-guided boundary delineration in prostate in ultrasound images. IEEE TMI 19 (2000) 1211–1219

    Google Scholar 

  49. Knoll, C., Alcaniz, M., Grau, V., Monserrat, C., Juan, M.C.: Outlining of the prostate using snakes with shape restrictions based on the wavelet transform. Pattern Recognition 32 (1999) 1767–1781

    Article  Google Scholar 

  50. Garfinkel, L., Mushinski, M.: A three-dimensional deformable model for segmentation of human prostate from ultrasound images. Med. Phys. 28 (2001) 2147–2153

    Google Scholar 

  51. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1 (1987) 321–331

    Google Scholar 

  52. Terzopoulos, D., Fleischer, K.: Deformable models. The Visual Computer 4 (1988) 306–331

    Article  Google Scholar 

  53. Singh, A., Goldgof, D., Terzopoulos, D.: Deformable Models in Medical Image Analysis. IEEE Press, Los Alamitos, CA (1998)

    Google Scholar 

  54. McInerney, T., Terzopoulos, D.A.: A dynamic finite-element surface model for segmentation and tracking in multidimensional medical images with applications to cardiac 4D image analysis. Computer Medical Imaging Graphics 19 (1995) 69–83

    Google Scholar 

  55. McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: A survey. Medical image Analysis 1 (1996) 91–108

    Article  Google Scholar 

  56. McInerney, T., Terzopoulos, D.: Topology adaptive deformable surfaces for medical image volume segmentation. IEEE Transactions on Medical Imaging 18 (1999) 840–850

    Google Scholar 

  57. McInerney, T., Terzopoulos, D.: T-snakes: Topology adaptive snakes. Medical Image Analysis 4 (2000) 73–91

    Article  Google Scholar 

  58. Keeve, E., Kikinis, R.: Deformable modeling of facial tissue. In: Proceedings of the First Joint BMES/EMBS Conference. Volume 1.1. (1999) 502

    Google Scholar 

  59. Sitek, A., Klein, G.J., Gullberg, G.T., Huesman, R.H.: Deformable model of the heart with fiber structure. IEEE Transactions on Nuclear Science 49 (2002) 789–793

    Article  Google Scholar 

  60. Metaxas, D.N., Kakadiaris, I.A.: Elastically adaptive deformable models. IEEE Transactions on Medical Imaging 24 (2002) 1310–1321

    Google Scholar 

  61. Miller, J.V., Breen, D.E., Lorensen, W.E., O’Bara, R.M., Wozny, M.J.: Geometrically deformable models: A method to extract closed geometric model from volume data. Computer Graphics 25 (91) 217–226

    Google Scholar 

  62. Lobret, S., Viergever, M.A.: A discrete dynamic contour model. IEEE Trans. Med. Image 14 (1995) 12–24

    Google Scholar 

  63. Ladak, H.M., Mao, F., Wang, Y., Downey, D.B., Steinman, D.A., Fenster, A.: Prostate boundary segmentation from 2D ultrasound images. Med. Phys. 27 (2000) 1777–1788

    Article  Google Scholar 

  64. Gill, J.D., Ladak, H.M., Steinman, D.A., Fenster, A.: Accuracy and variability assessment of a semiautomatic technique for segmentation of the carotid arteries from three-dimensional ultrasound images. Med Phys 27 (2000) 1333–1342

    Article  Google Scholar 

  65. Solina, F., Bajcsy, R.: Recovery of parametric models from range images: The case for superquadrics with global deformation. IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (1990) 131–147

    Article  Google Scholar 

  66. Schroeder, W.J., Martin, K.M., Avila, L.S., Law, C.C.: The VTK Users Guide. Kitware, Inc (1998)

    Google Scholar 

  67. Bonilla-Musoles, F., Raga, F., Osborne, N.G., Blanes, J.: Principal warps: Thin-plate splines and the decomposition of deformations., IEEE Trans. Pattern Analysis and Machine Intelligence 11 (1989) 567–585

    Google Scholar 

  68. Lichtenbelt, B., Crane, R., Naqvi, S.: Introduction to Volume Rendering. Prentice-Hall, Upper Saddle River, NJ (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Fenster, A. et al. (2005). Visualization and Segmentation Techniques in 3D Ultrasound Images. In: Bhanu, B., Pavlidis, I. (eds) Computer Vision Beyond the Visible Spectrum. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/1-84628-065-6_8

Download citation

  • DOI: https://doi.org/10.1007/1-84628-065-6_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-604-2

  • Online ISBN: 978-1-84628-065-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics