Fractals and Surface Rroughness in EHL

  • F. M. Borodich
Conference paper

DOI: 10.1007/1-4020-4533-6_29

Part of the Solid Mechanics and Its Applications book series (SMIA, volume 134)
Cite this paper as:
Borodich F.M. (2006) Fractals and Surface Rroughness in EHL. In: Snidle R.W., Evans H.P. (eds) IUTAM Symposium on Elastohydrodynamics and Micro-elastohydrodynamics. Solid Mechanics and Its Applications, vol 134. Springer, Dordrecht

Abstract

Firstly, a brief introduction to fractals and similarity methods is given. Fractal models of rough surfaces are usually used when the spectral density function of surfaces has the power law character. It is argued that the main source for various misunderstandings in applications of fractals to mechanics is the lack of precise definitions and non-critical repetition of common statements about fractal geometry. Some key papers concerning fractal models of roughness and papers connecting EHL and fractals are reviewed. Two classes of fractal surfaces introduced by the author, namely the Cantor profile models and the parametric-homogeneous (PH) surfaces, are discussed. The well-known Weierstrass-Mandelbrot (W-M) profile is a particular case of PH-profiles. It is shown that only physical fractals (prefractals) should be attributed to real surfaces. It is argued that the Cantor profile is simple for analytical analysis. However, it has a minor drawback: all asperities of the profile have one-level character, while, as Archard showed, real roughness has a hierarchical structure. Finally, it is suggested to model rough surfaces by a multilevel prefractal model introduced by Borodich and Onishchenko.

Keywords

roughness fractal parametric-homogeneous surfaces multilevel prefractal model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer 2006

Authors and Affiliations

  • F. M. Borodich
    • 1
  1. 1.School of EngineeringCardiff UniversityCardiffUK

Personalised recommendations