Skip to main content

TECTONICALLY CONTROLLED METHANE ESCAPE IN LAKE BAIKAL

  • Conference paper

Part of the book series: Nato Science Series: IV: Earth and Environmental Sciences ((NAIV,volume 65))

Abstract

Methane, which is at least partly stored in the bottom sediments of Lake Baikal as gas hydrates, is released on the lake floor in the deeper parts of the basin along major faults, forming venting structures similar to small mud volcanoes. The CH2 venting structures are considered to be the surface expression of escape pathways for excess CH4 generated by the dissociation of pre-existing hydrates. The existence of a local heat flow anomaly associated with the seep area is most likely due to a heat pulse causing the dissociation of the underlying gas hydrates. The heat pulse may be caused by upward flow of geothermal fluids along segments of active faults, possibly accelerated by seismic pumping. It is assumed that this fluid flow is tectonically triggered, considering that left-lateral strike-slip movements along the border faults act as a major factor in fluid accumulation: even a reduced lateral displacement is able to generate fluid flow in the compressional direction, resulting in fluid escape along faults directed along the main direction of extension. The tectonic effect may be coupled to the sediment compaction due to a high sedimentation rate in the area of mud volcanism. Both processes may generate a large-scale convective fluid loop within the basin-fill sediments which advects deeper gases and fluids to the shallow sub-surface. Even in the extensional tectonic environment of Lake Baikal, local compressional forces related to a strike-slip component, may play a role in fluid flow, accumulation and gas escape along active faults. The mechanisms that result in the expulsion of the CH4 in the Lake Baikal sediments are considered as an analogue of what could happen during CO2 sequestration in a similar tectonic environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Booth, J.S., Winters, W.J., Dillon, W.P., Clennell, M.B. and Rowe, M.M., 1998, Major occurrences and reservoir concept of marine clathrate hydrates : implications of field evidence. In: Gas Hydrates: Relevance to World Margin Stability and Climate Change,J.P. Henriet and J. Mienert, eds, Geological Society, London, Special Publications, 137: 113–127.

    Google Scholar 

  • Brown, K.M., 1990, The nature and hydrological significance of mud diapirs and diatremes for accretionary systems, Journal of Geophysical Research, 95:8969–8982.

    Google Scholar 

  • Calais, E., Lesne, O., Deverchere, J., San'kov, V., Lukhnev, A., Miroshnitchenko, A., Buddo, V., Levi, K., Zalutzky, V., Bashkuev, Y., 1998, Crustal deformation in the Baikal rift from GPS measurements, Geophysical Research Letters, 25: 4003–4006.

    Article  Google Scholar 

  • Colman, S.M., Jones, G.A., Rubin, M., King, J.W., Peck, J.A, and Orem, W.H., 1996, AMS radiocarbon analyses from Lake Baikal, Siberia: Challenges of dating sediments from a large, oligotrophic lake, Quaternary Geochronology, 15:669–684.

    Google Scholar 

  • De Batist, M., Klerkx, J., Van Rensbergen, P., Vanneste, M., Poort, J., Golmshtok, A., Kremlev, A., Khlystov, O., and Krinitsky, P., 2002, Active Hydrate Destabilization in Lake Baikal, Siberia? Terra Nova, 14(6):436–442.

    Google Scholar 

  • Dillon, W.P., Danforth, W.W., Hutchinson, D.R., Drury, R.M., Taylor, M.H., and Booth, J.S., 1998, Evidence for faulting related to dissociation of gas hydrate and release of methane off the southeastern United States, In: Gas Hydrates: Relevance to World Margin Stability and Climate Change, J.P. Henriet and J. Mienert, eds,. Geological Society, London, Special Publications, 137, pp. 293–302.

    Google Scholar 

  • Duchkov, A.D., Lysak, S.V., Golubev, V.A., Dorofeeva, R.P., and Sokolova, L.S., 1999, Heat flow and geothermal field of the Baikal region, Geologiya i Geofizika, 40:287–303.

    Google Scholar 

  • Ginsburg, G.D., 1998. Gas hydrate accumulation in deep-water marine sediments. In: Gas Hydrates : Relevance to World Margin Stability and Climate Change, J.P. Henriet and J. Mienert, eds. Geological Society, London, Special Publications, 137, pp. 51–62.

    Google Scholar 

  • Ginsburg, G.D. and Soloviev, V.A., 1997, Methane migration within the submarine gashydrate stability zone under deep-water conditions, Marine Geology 137:49–57.

    Article  CAS  Google Scholar 

  • Golmshstok, A.Y., Duchkov, A.D., Hutchinson, D.R., Khanukaev, S.B., and El’nikov, A.I., 1997, Estimations of heat flow in Lake Baikal by seismic data on the lower boundary of gas hydrate layer, Russian Geology and Geophysics, 38(10):1714–1727.

    Google Scholar 

  • Golmshstok, A.Ya., Duchkov, A.D., Hutchinson, D.R., and Khanukaev, S.B., Heat flow and gas hydrates of Baikal Riftt Zone, Geol. Rundschau, in press.

    Google Scholar 

  • Granin, N.G. and Granina, L.Z., 2002, Gas hydrates and gas venting in Lake Baikal. Russian Geology and Geophysics, 43(7):589–597.

    Google Scholar 

  • Henriet, J.P. and Mienert, J. (eds), 1998. Gas Hydrates: Relevance to world margin stability and climatic change. Geological Society, London, Special Publications, 137.

    Google Scholar 

  • Hutchinson, D.H., Golmshtok, A.J., Zonenshain, L.P., Moore, T.C., Scholz, C.A., and Klitgord, K.D., 1992, Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data, Geology, 20:589–592.

    Google Scholar 

  • Hyndman, R.D. and Davis, E.E., 1992, A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion, J. Geophys. Res., 97(5B):7025–7041.

    CAS  Google Scholar 

  • Kennett, J.P. and Fackler-Adams, B.N., 2000, Relationship of clathrate instability to sediment deformation in the upper Neogene of California, Geology, 28(3):215–218.

    Article  CAS  Google Scholar 

  • Kuzmin, M.I., Kalmychkov, G.V., Geletii, V.F., 1998, First find of gas hydrates in sediments of Lake Baikal. Doklady Akademii Nauk, 362(4):541–543 (in Russian).

    CAS  Google Scholar 

  • Kuzmin, M.I., Kalmychkov, G.V., Duchkov, A.D., Getetii,V.F., Golmshstok, A.Y., Karabanov, E.B., Khakhaev, B.N., Pevzner, L.A., Ioshida, H., Bazhin, N.M., Dyadin, Y.A., Larionov, E.G., Manakov, A.Y., Mandel'baum, M.M., and Vashchenko, I.F., 2000, Methane hydrates in sediments of Lake Baikal. Geology of Ore Deposits, 42(1):25–37 (in Russian).

    CAS  Google Scholar 

  • Kvenvolden, K.A., 1988, Methane hydrate-a major reservoir of carbon in the shallow geosphere? Chemical Geology, 71:41–51.

    Article  CAS  Google Scholar 

  • Kvenvolden, K.A., 1993, Gas hydrates-Geological perspective and global change, Reviews of Geophysics, 31:173–187.

    Article  Google Scholar 

  • Levi, K.G., Miroshnichenko, A.I., Sankov, V.A., Babushkin, S.M., Larkin, G.V., Badardinov, A.A., Wong, H.K., Colman, S., and Delvaux, D., 1997, Active faults of the Baikal depression, Bull. Centre Rech. Elf Explor.-Prod., 21(2):399–434.

    Google Scholar 

  • Limonov, A.F., Van Weering, Tj.C.F., Kenyon, N.H., Ivanov, M.K., and Meisner, L.B., 1997, Seabed morphology and gas venting in the Black Sea mudvolcano area : Observations with the MAK-1 deep-tow sidescan sonar and bottom profiler, Marine Geology, 137:121–136.

    Article  Google Scholar 

  • Logatchev, N.A., 1993, History and geodynamics of the Lake Baikal rift in the context of the Eastern Siberia rift system: a review, Bull. Centres Rech. Explor-Prod. Elf Aquitaine, 17(2):353–370.

    Google Scholar 

  • Mats, V.D., 1993, The structure and development of the Baikal rift depression, Earth Science Reviews, 34:81–118.

    Article  Google Scholar 

  • Mats, V.D., Khlystov, O.M., De Batist, M., Ceramicola, S., Lomonosova, T.K., and Klimansky, A., 2000, Evolution of the Academician Ridge Accommodation Zone in the central part of the Baikal Rift, from high-resolution reflection seismic profiling and geological field investigations, International Journal of Earth Sciences, 89(2):229–250.

    Article  Google Scholar 

  • Moore, T.C., Klitgord, K.D., Golmshstok, A.J., and Weber, E., 1997, Sedimentation and subsidence patterns in the central and north basins of Lake Baikal from seismic stratigraphy, Geol. Soc. America Bull., 109(6):746–766.

    Article  Google Scholar 

  • Paull, C.K., Ussler, W., Borowski, W.S., and Spiess, F.N., 1995, Methane-rich plumes on the Carolina continental rise-associations with gas hydrates, Geology, 23(1):89–92.

    Article  CAS  Google Scholar 

  • Petit, C., Burov, E., Deverchere, J., 1997, On the structure and mechanical behaviour of the extending lithosphere in the Baikal rift from gravity modeling, Earth and Planetary Science Letters, 149(1–4):29–42.

    CAS  Google Scholar 

  • Petit, C., Koulakov, I., Deverchere, J., 1998, Velocity structure around the Baikal rift zone from teleseismic and local earthquake traveltimes and geodynamic implications, Tectonophysics, 296(1–2):125–144.

    Google Scholar 

  • Scholz, C.A.,and Hutchinson, D.R., 2000, Stratigraphic and structural evolution of the Selenga Delta Accommodation Zone, Lake Baikal Rift, Siberia, International Journal of Earth Sciences, 89:212–228.

    Article  Google Scholar 

  • Soloviev, V.A., and Ginsburg, G.D., 1997, Water segregation in the course of gas hydrate formation and accumulation in submarine gas-seepage fields, Marine Geology, 137:59–68.

    Article  CAS  Google Scholar 

  • Suess, E., Torres, M.E., Bohrmann, G., Collier, R.W., Greinert, J., Linke, P., Rehder, G., Trehu, A., Wallmann, K., Winckler,G., and Zuleger, E., 1999, Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin, Earth and Planetary Science Letters, 170:1–15.

    Article  CAS  Google Scholar 

  • Trehu, A.M., Torres, M.E., Moore, G.F., Suess, E., and Bohrmann, G., 1999, Temporal and spatial evolution of a gas hydrate-bearing accretionary ridge on the Oregon continental margin, Geology, 27(10):939–942.

    CAS  Google Scholar 

  • Vanneste, M., Poort, J., De Batist, M., and Klerkx, J., 2003, Atypical heat flow near gas hydrate irregularities and cold seeps in the Baikal Rift Zone, Marine and Petroleum Geology, 19:1257–1274.

    Google Scholar 

  • Van Rensbergen, P., De Batist, M., Klerkx, J., Hus, R., Poort, J., Vanneste, M., Granin, N., Khlystov, O., and Krinitsky, P., 2002, Sublacustrine mud volcanoes and methane seeps caused by dissociation of gas hydrates in Lake Baikal, Geology, 30(7):631–634.

    Article  Google Scholar 

  • Van Rensbergen, P., Poort, J., Kipfer, R., De Batist, M., Vanneste, M., Klerkx, J., Granin, N., Khlystov, O., and Krinitsky, P., 2003, Evidence of near-surface sediment mobilization and methane venting in relation to hydrate dissociation in Southern Lake Baikal, Siberia. In: Subsurface sediment mobilization. P. Van Rensbergen, R.R.Hillis, A.J. Maltman and C.K. Morley, eds., Geological Society Special Publication, 216:207–221

    Google Scholar 

  • Von Huene, R., and Pecher, I.A., 1999, Vertical tectonics and the origin of BSRs along the Peru margin, Earth and Planetary Science Letters, 166:47–55.

    Google Scholar 

  • Von Rad, U., Berner, U., Delisle, G., Doose-Rolinski, H., Fechner, N., Linke, P., Lückge, A., Roeser, H.A., Schmaljohann, R., and Wiedicke, M., 2000, Gas and fluid venting at the Makran accretionary wedge off Pakistan, Geo-Marine Letters, 20:10–19.

    Google Scholar 

  • Zonenshain, L.P., 1992, Baikal rift structure, Geotectonics, 26(5):396–407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Klerkx, J. et al. (2006). TECTONICALLY CONTROLLED METHANE ESCAPE IN LAKE BAIKAL. In: Lombardi, S., Altunina, L., Beaubien, S. (eds) Advances in the Geological Storage of Carbon Dioxide. Nato Science Series: IV: Earth and Environmental Sciences, vol 65. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4471-2_17

Download citation

Publish with us

Policies and ethics