Skip to main content

Automated Macromodelling for Simulation of Signals and Noise in Mixed-Signal/RF Systems

  • Chapter
Analog Circuit Design
  • 3295 Accesses

Abstract

During the design of electronic circuits and systems, particularly those for RF communications, the need to abstract a subsystem from a greater level of detail to one at a lower level of detail arises frequently. One important application is to generate simple, yet accurate, system-level macromodels that capture circuit-level non-idealities such as distortion. In recent years, computational (“algorithmic”) techniques have been developed that are capable of automating this abstraction process for broad classes of differential-equationbased systems (including nonlinear ones). In this paper, we review the main ideas and techniques behind such algorithmic macromodelling methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Demir, E. Liu, A.L. Sangiovanni-Vincentelli and I. Vassiliou. Behavioral simulation techniques for phase/delay-locked systems. In Proceedings of the Custom Integrated Circuits Conference 1994, pages 453–456, May 1994.

    Google Scholar 

  2. E. Chiprout and M.S. Nakhla. Asymptotic Waveform Evaluation. Kluwer, Norwell, MA, 1994.

    Google Scholar 

  3. A. Costantini, C. Florian, and G. Vannini. Vco behavioral modeling based on the nonlinear integral approach. IEEE International Symposium on Circuits and Systems, 2:137–140, May 2002.

    Google Scholar 

  4. D. Schreurs, J. Wood, N. Tufillaro, D. Usikov, L. Barford, and D.E. Root. The construction and evaluation of behavioral models for microwave devices based on time-domain large-signal measurements. In Proc. IEEE IEDM, pages 819–822, December 2000.

    Google Scholar 

  5. A. Demir, A. Mehrotra, and J. Roychowdhury. Phase noise in oscillators: a unifying theory and numerical methods for characterization. IEEE Trans. Ckts. Syst.–I: Fund. Th. Appl., 47:655–674, May 2000.

    Google Scholar 

  6. A. Demir and J. Roychowdhury. A Reliable and Efficient Procedure for Oscillator PPV Computation, with Phase Noise Macromodelling Applications. IEEE Trans. Ckts. Syst.–I: Fund. Th. Appl., pages 188–197, February 2003.

    Google Scholar 

  7. P. Feldmann and R.W. Freund. Efficient linear circuit analysis by Padé approximation via the Lanczos process. IEEE Trans. CAD, 14(5):639–649, May 1995.

    Google Scholar 

  8. R.W. Freund and P. Feldmann. Efficient Small-signal Circuit Analysis And Sensitivity Computations With The Pvl Algorithm. Proc. ICCAD, pages 404–411, November 1995.

    Google Scholar 

  9. K. Gallivan, E. Grimme, and P. Van Dooren. Asymptotic waveform evaluation via a lanczos method. Appl. Math. Lett., 7:75–80, 1994.

    Article  MathSciNet  Google Scholar 

  10. W. Gardner. Introduction to Random Processes. McGraw-Hill, New York, 1986.

    Google Scholar 

  11. E.J. Grimme. Krylov Projection Methods for Model Reduction. PhD thesis, University of Illinois, EE Dept, Urbana-Champaign, 1997.

    Google Scholar 

  12. A. Hajimiri and T.H. Lee. A general theory of phase noise in electrical oscillators. IEEE J. Solid-State Ckts., 33:179–194, February 1998.

    Google Scholar 

  13. J. Phillips, L. Daniel, and L.M. Silveira. Guaranteed passive balancing transformations for model order reduction. In Proc. IEEE DAC, pages 52–57, June 2002.

    Google Scholar 

  14. J-R. Li and J. White. Efficient model reduction of interconnect via approximate system gramians. In Proc. ICCAD, pages 380–383, November 1999.

    Google Scholar 

  15. J. Wood and D.E. Root. The behavioral modeling of microwave/RF ICs using nonlinear time series analysis. In IEEE MTT-S Digest, pages 791–794, June 2003.

    Google Scholar 

  16. K. Francken, M. Vogels, E. Martens, and G. Gielen. A behavioral simulation tool for continuous-time /spl Delta//spl Sigma/ modulators. In Proc. ICCAD, pages 229–233, November 2002.

    Google Scholar 

  17. J. Katzenelson and L.H. Seitelman. An iterative method for solution of nonlinear resistive networks. Technical Report TM65-1375-3, AT&T Bell Laboratories.

    Google Scholar 

  18. K.J. Kerns, I.L. Wemple, and A.T. Yang. Stable and efficient reduction of substrate model networks using congruence transforms. In Proc. ICCAD, pages 207–214, November 1995.

    Google Scholar 

  19. K. Kundert. Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers. www.designers-guide.com, 2002.

    Google Scholar 

  20. K.S. Kundert, J.K. White, and A. Sangiovanni-Vincentelli. Steady-state methods for simulating analog and microwave circuits. Kluwer Academic Publishers, 1990.

    Google Scholar 

  21. L. Hongzhou, A. Singhee, R. Rutenbar, and L.R. Carley. Remembrance of circuits past: macromodeling by data mining in large analog design spaces. In Proc. IEEE DAC, pages 437–442, June 2002.

    Google Scholar 

  22. L.M. Silveira, M. Kamon, I. Elfadel, and J. White. A coordinate-transformed Arnoldi algorithm for generating guaranteed stable reduced-order models of RLC circuits. In Proc. ICCAD, pages 288–294, November 1996.

    Google Scholar 

  23. M. Kamon, F. Wang, and J. White. Generating nearly optimally compact models from Krylov-subspace based reduced-order models. IEEE Trans. Ckts. Syst.-II: Sig. Proc., pages 239–248, April 2000.

    Google Scholar 

  24. M. F. Mar. An event-driven pll behavioral model with applications to design driven noise modeling. In Proc. Behav. Model and Simul.(BMAS), 1999.

    Google Scholar 

  25. N. Dong and J. Roychowdhury. Piecewise Polynomial Model Order Reduction. In Proc. IEEE DAC, pages 484–489, June 2003.

    Google Scholar 

  26. N. Dong and J. Roychowdhury. Automated Extraction of Broadly-Applicable Nonlinear Analog Macromodels from SPICE-level Descriptions. In Proc. IEEE CICC, October 2004.

    Google Scholar 

  27. L.W. Nagel. SPICE2: a computer program to simulate semiconductor circuits. PhD thesis, EECS Dept., Univ. Calif. Berkeley, Elec. Res. Lab., 1975. Memorandum no. ERL-M520.

    Google Scholar 

  28. O. Narayan and J. Roychowdhury. Analysing Oscillators using Multitime PDEs. IEEE Trans. Ckts. Syst.-I: Fund. Th. Appl., 50(7):894–903, July 2003.

    MathSciNet  Google Scholar 

  29. A. Nayfeh and B. Balachandran. Applied Nonlinear Dynamics. Wiley, 1995.

    Google Scholar 

  30. E. Ngoya and R. Larchevèque. Envelop transient analysis: a new method for the transient and steady state analysis of microwave communication circuits and systems. In Proc. IEEE MTT Symp., 1996.

    Google Scholar 

  31. A. Odabasioglu, M. Celik, and L.T. Pileggi. PRIMA: passive reduced-order interconnect macromodelling algorithm. In Proc. ICCAD, pages 58–65, November 1997.

    Google Scholar 

  32. A. Odabasioglu, M. Celik, and L.T. Pileggi. PRIMA: passive reduced-order interconnect macromodelling algorithm. IEEE Trans. CAD, pages 645–654, August 1998.

    Google Scholar 

  33. Fujisawa Ohtsuki and Kumagai. Existence theorems and a solution algorithm for piecewise linear resistor networks. SIAM J. Math. Anal., 8, February 1977.

    Google Scholar 

  34. P. Li and L. Pileggi. NORM: Compact Model Order Reduction of Weakly Nonlinear Systems. In Proc. IEEE DAC, pages 472–477, June 2003.

    Google Scholar 

  35. P. Vanassche, G. Gielen, and W. Sansen. Constructing symbolic models for the input/output behavior of periodically time-varying systems using harmonic transfer matrices . In Proc. IEEE DATE Conference, pages 279–284, March 2002.

    Google Scholar 

  36. J. Phillips. Model Reduction of Time-Varying Linear Systems Using Approximate Multipoint Krylov-Subspace Projectors. In Proc. ICCAD, November 1998.

    Google Scholar 

  37. J. Phillips. Projection-based approaches for model reduction of weakly nonlinear, time-varying systems. IEEE Trans. CAD, 22(2):171–187, February 2000.

    Google Scholar 

  38. J. Phillips. Projection frameworks for model reduction of weakly nonlinear systems. In Proc. IEEE DAC, June 2000.

    Google Scholar 

  39. L.T. Pillage and R.A. Rohrer. Asymptotic waveform evaluation for timing analysis. IEEE Trans. CAD, 9:352–366, April 1990.

    Google Scholar 

  40. T.L. Quarles. Analysis of Performance and Convergence Issues for Circuit Simulation. PhD thesis, EECS Dept., Univ. Calif. Berkeley, Elec. Res. Lab., April 1989. Memorandum no. UCB/ERL M89/42.

    Google Scholar 

  41. R. Freund. Passive reduced-order models for interconnect simulation and their computation via Krylov-subspace algorithms. In Proc. IEEE DAC, pages 195–200, June 1999.

    Google Scholar 

  42. R. Freund and P. Feldmann. Reduced-order modeling of large passive linear circuits by means of the SyPVL algorithm. In Proc. ICCAD, pages 280–287, November 1996.

    Google Scholar 

  43. M. Rewienski and J. White. A Trajectory Piecewise-Linear Approach to Model Order Reduction and Fast Simulation of Nonlinear Circuits and Micromachined Devices. In Proc. ICCAD, November 2001.

    Google Scholar 

  44. M. Rosch and K.J. Antreich. Schnell stationäre simulation nichtlinearer schaltungen im frequenzbereich. AEÜ, 46(3):168–176, 1992.

    Google Scholar 

  45. J. Roychowdhury. MPDE methods for efficient analysis of wireless systems. In Proc. IEEE CICC, May 1998.

    Google Scholar 

  46. J. Roychowdhury. Reduced-order modelling of linear time-varying systems. In Proc. ICCAD, November 1998.

    Google Scholar 

  47. J. Roychowdhury. Reduced-order modelling of time-varying systems. IEEE Trans. Ckts. Syst.-II: Sig. Proc., 46(10), November 1999.

    Google Scholar 

  48. J. Roychowdhury. Analysing circuits with widely-separated time scales using numerical PDE methods. IEEE Trans. Ckts. Syst.-I: Fund. Th. Appl., May 2001.

    Google Scholar 

  49. W. Rugh. Nonlinear System Theory - The Volterra-Wiener Approach. Johns Hopkins Univ Press, 1981.

    Google Scholar 

  50. Y. Saad. Iterative methods for sparse linear systems. PWS, Boston, 1996.

    Google Scholar 

  51. M. Schetzen. The Volterra and Wiener Theories of Nonlinear Systems. John Wiley, 1980.

    Google Scholar 

  52. M. Schwab. Determination of the steady state of an oscillator by a combined time-frequency method. IEEE Trans. Microwave Theory Tech., 39:1391–1402, August 1991.

    Google Scholar 

  53. J. L. Stensby. Phase-locked loops: Theory and applications. CRC Press, New York, 1997.

    Google Scholar 

  54. S.X.-D Tan and C.J.-R Shi. Efficient DDD-based term generation algorithm for analog circuit behavioral modeling. In Proc. IEEE ASP-DAC, pages 789–794, January 2003.

    Google Scholar 

  55. S.X.-D Tan and C.J.-R Shi. Efficient DDD-based term generation algorithm for analog circuit behavioral modeling. In Proc. IEEE DATE Conference, pages 1108–1009, March 2003.

    Google Scholar 

  56. S.X.-D Tan and C.J.-R Shi. Efficient very large scale integration power/ground network sizing based on equivalent circuit modeling. IEEE Trans. CAD, 22(3):277–284, March 2003.

    Google Scholar 

  57. R. Telichevesky, K. Kundert, and J. White. Efficient steady-state analysis based on matrix-free krylov subspace methods. In Proc. IEEE DAC, pages 480–484, 1995.

    Google Scholar 

  58. P. Vanassche, G.G.E. Gielen, and W. Sansen. Behavioral modeling of coupled harmonic oscillators. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 22(8):1017–1026, August 2003.

    Google Scholar 

  59. W. Daems, G. Gielen, and W. Sansen. A ?tting approach to generate symbolic expressions for linear and nonlinear analog circuit performance characteristics. In Proc.—IEEE DATE Conference, pages 268–273, March 2002.

    Google Scholar 

  60. L. Wu, H.W. Jin, and W.C. Black. Nonlinear behavioral modeling and simulation of phase-locked and delay-locked systems. In Proceedings of IEEE CICC, 2000, pages 447–450, May 2000.

    Google Scholar 

  61. X. Huang, C.S. Gathercole, and H.A. Mantooth. Modeling nonlinear dynamics in analog circuits via root localization. IEEE Trans. CAD, 22(7):895–907, July 2003.

    Google Scholar 

  62. X. Lai and J. Roychowdhury. Capturing injection locking via nonlinear phase domain macromodels. IEEE Trans. MTT, 52(9):2251–2261, September 2004.

    Article  Google Scholar 

  63. X. Lai and J. Roychowdhury. Fast, accurate prediction of PLL jitter induced by power grid noise. In Proc. IEEE CICC, May 2004.

    Google Scholar 

  64. X. Lai, Y. Wan and J. Roychowdhury. Fast PLL Simulation Using Nonlinear VCO Macromodels for Accurate Prediction of Jitter and Cycle-Slipping due to Loop Non-idealities and Supply Noise. In Proc. IEEE ASP-DAC, January 2005.

    Google Scholar 

  65. Y. Qicheng and C. Sechen. A uni?ed approach to the approximate symbolic analysis of large analog integrated circuits. IEEE Trans. Ckts. Syst.-I: Fund. Th. Appl., pages 656–669, August 1996.

    Google Scholar 

  66. Z. Bai, R. Freund, and P. Feldmann. How to make theoretically passive reduced-order models passive in practice. In Proc. IEEE CICC, pages 207–210, May 1998.

    Google Scholar 

  67. L. A. Zadeh and C. A. Desoer. Linear System Theory: The State-Space Approach. McGraw-Hill Series in System Science. McGraw-Hill, New York, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Roychowdhury, J. (2006). Automated Macromodelling for Simulation of Signals and Noise in Mixed-Signal/RF Systems. In: Steyaert, M., Huijsing, J., van Roermund, A. (eds) Analog Circuit Design. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3885-2_8

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3885-2_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3884-6

  • Online ISBN: 978-1-4020-3885-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics