[1]
G. Deschamps. Electromagnetics and differential forms.
IEEE Proceedings., 69(6):676–687, 1981.
CrossRef[2]
D. Baldomir. Differential forms and electromagnetism in 3-dimensional Euclidean space R3.
IEEE Proceedings., 133(3):139–143, 1986.
MathSciNet[3]
A. Bossavit. Computational Electromagnetism: Variational Formulation, Complementarity, Edge Elements. Academic Press, 1998.
[4]
R. Abraham, J.E. Marsden, and T. Ratiu. Manifolds, Tensor Analysis, and Applications. Applied Mathematical Sciences. Springer Verlag, second edition edition, 1996.
[5]
H. Whitney. Geometric Integration Theory. Princeton University Press, 1957.
[6]
J.C. Nédélec. Mixed finite elements in R3.
Numer. Math., 35:315–341, 1980.
CrossRefMathSciNetMATH[7]
J.C. Nédélec. A new family of mixed finite elements in R3.
Numer. Math., 50:57–81, 1986.
CrossRefMathSciNetMATH[8]
P.A. Raviart and J.M. Thomas. A Mixed Finite Element Method for 2^{nd} Order Elliptic Problems. In I. Galligani and E. Mayera, editors, Mathematical Aspects of the Finite Element Method, Vol. 606 of Lect. Notes. on Mathematics, pp. 293–315. Springer Verlag, 1977.
[9]
F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics. Springer Verlag, 1991.
[10]
R. Hiptmair. Canonical construction of finite elements.
Math. Comp., 68(228):1325–1346, 1999.
CrossRefMathSciNetMATH[11]
I. Babuska, T. Strouboulis, C.S. Upadhyay, and S.K. Gangaraj. A posteriori estimation and adaptive control of the pollution error in the
h-version of the finite element method for finite element solution of Helmholtz.
Internat. J. Numer. Methods Engrg., 38(24):4207–4235, 1995.
CrossRefMathSciNetMATH[12]
I. Babuska, F. Ihlenburg, T. Strouboulis, and S.K. Gangaraj. A posteriori error estimation for finite element solution of Helmholtz.
Internat. J. Numer. Methods Engrg., 40(21):3883–3900, 1997.
CrossRefMathSciNetMATH[13]
S. Warren and W. Scott. An investigation of numerical dispersion in the vector finite element method using quadrilateral elements.
IEEE Trans. Ant. Prop., 42(11):1502–1508, 1994.
CrossRefMathSciNetMATH[14]
S. Warren and W. Scott. Numerical dispersion in the finite element method using triangular edge elements. Opt. Tech. Lett, 9(6):315–319, 1995.
[15]
D.A. White. Numerical dispersion of a vector finite element method on skewed hexahedral grids.
Commun. Numer. Meth. Engng., 16:47–55, 2000.
CrossRefMATH[16]
M. Ainsworth. Dispersive properties of high-order Nedelec/edge element approximation of the time-harmonic Maxwell equations.
Philisophical Transactions of the Royal Society of London, 362(1816):471–491, 2004.
CrossRefMathSciNetMATH[17]
E. Tonti. A direct formulation of field laws: The cell method. CMES, 2(2):237–258, 2001.
[18]
T. Weiland. Time domain electromagnetic field computation with finite difference methods.
Int. J. Numer. Modelling, 9:295–319, 1996.
CrossRef[19]
M. Clemens and T. Weiland. Discrete electromagnetism with the finite integration technique. In F. Texeira, editor, Geometric Methods for Computational Electromagnetics, Vol. 32 of PIER, pp. 189–206. EMW Publishing, Cambridge, MA, 2001.
[20]
J.M. Hyman and M.J. Shashkov. Mimetic discretizations for maxwell’s equations.
J. Comput. Phys., 151(2):881–909, 1999.
CrossRefMathSciNetMATH[21]
K.S. Yee. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media.
IEEE Trans. Ant. Prop., 14(3):302–307, 1966.
CrossRefMATH[22]
F.L. Teixeira and W.C. Chew. Lattice electromagnetic theory from a topological viewpoint.
J. Math. Phys., 40(1): 169–187, 1999.
CrossRefMathSciNetMATH[23]
F.L. Teixeira. Geometric Methods in Computational Electromagnetics, Vol. PIER 32. EMW Publishing, Cambridge, Mass., 2001.
[24]
R. Hiptmair. Discrete Hodge operators: An algebraic perspective.
J. Electromagnteic Waves Appl., 15(3):343–344, 2001.
MathSciNet[25]
D.N. Arnold and F. Brezzi. Mixed andnonconforming finite elememnt methods: implementation, postprocessing, and error estimates.
Math. Modelling and Numer. Anal., 19:7–32, 1985.
MathSciNetMATH[26]
D.N. Arnold. Mixed finite element methods for elliptic problems.
Comput. Methods Appl. Mech. Engrg., 82(1–3):281–300, 1990.
CrossRefMathSciNetMATH[27]
P.G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, 1978.
[28]
R. Graglia, D. Wilton, and A. Peterson. Higher order interpolatory vector bases for computational electromagnetics.
IEEE Trans. Ant. Prop., 45(3):329–342, 1997.
CrossRefMathSciNet[29]
R. Graglia, P. Wilton, A. Peterson, and I.-L. Gheorma. Higher order interpolatory vector bases on prism elements.
IEEE Trans. Ant. Prop., 46(3):442–450, 1998.
CrossRefMathSciNetMATH[30]
P. Castillo, R. Rieben, and D. White. FEMSTER: An object oriented class library of discrete differential forms. ACM Trans. Math. Soft. in press.
[31]
P. Castillo, R. Rieben, and D. White. FEMSTER: An object oriented class library of discrete differential forms. In Proceedings of the 2003 IEEE International. Antennas and Propagation Symposium, Vol. 2, pp. 181–184, Columbus, Ohio, June 2003.
[32]
P. Castillo, J. Koning, R. Rieben, M. Stowell, and D. White. Discrete differential forms: A novel methodology for robust computational electromagnetics. Technical Report UCRL-ID-151522, Lawrence Livermore National Laboratory, Center for Applied Scientific Computing, January 2003.
[33]
R. Rieben, D. White, and G. Rodrigue. Improved conditioning of finite element matrices using new high order interpolatory bases.
IEEE Trans. Ant. Prop., 52(10):2675–2683, October 2004.
CrossRefMathSciNet[34]
A. Fisher, R. Rieben, G. Rodrigue, and D. White. A generalized mass lumping technique for vector finite element solutions of the time dependent Maxwell equations. IEEE Trans. Ant. Prop., December 2004. accepted for publication.
[35]
A. Bossavit. Solving Maxwell equations in a closed cavity, and the question of spurious modes.
IEEE Trans. Mag., 26(2):702–705, 1990.
CrossRef[36]
Z.J. Cendes. Vector finite elements for electromagnetic field computation.
IEEE. Trans. Mag., 27(5):3958–3966, 1991.
CrossRef[37]
D.A. White and J.M. Koning. Computing solenoidal eigenmodes of the vector Helmholtz equation: a novel approach.
IEEE Trans. Mag., 38(5):3420–3425, 2002.
CrossRef[38]
R. Lehoucq, D. Sorenson, and C. Yang. ARPACK User’s Guide: Solution of Large. Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, 1998.
[39]
P. Balleyguier. Coupling slots measurements against simulation for Trispal accelerating cavities. In Linac’ 98, p. 130. Chicago, 1998.
[40]
R. Rieben, G. Rodrigue, and D. White. A high order mixed vector finite element method for solving the time dependent Maxwell equations on unstructured grids.
J. Comput. Phys., 204(2):490–519, April 2005.
CrossRefMATH[41]
R. Rieben, D. White, and G. Rodrigue. High order symplectic integration methods for finite element solutions to time dependent maxwell equations.
IEEE Trans. Ant. Prop., 52(8):2190–2195, August 2004.
CrossRefMathSciNet[42]
R. Rieben. A Novel High Order Time Domain Vector Finite Element Method for. the Simulation of Electromagnetic Devices. PhD thesis, University of California at Davis, Livermore, California, 2004.
[43]
D. Marcuse. Curvature loss formula for optical fibers.
J. Opt. Soc. Am., 66(3):216–220, 1976.
CrossRef[44]
J. Koning, R. Rieben, and G. Rodrigue. Vector finite element modeling of the full-wave Maxwell equations to evaluate power loss in bent optical fibers. IEEE/OSA J. Lightwave Tech., May 2005. article in press.
[45]
H.S. Sözüer and J.P. Dowling. Photonic band calculations for woodpile structures. J. Mod. Opt., 41(2):231–239, 1994.
[46]
E Özbay, A. Abeyta, G. Tuttle, M. Trinigides, R. Biswas, C.T. Chan, CM Souk-oulis, and K.M. Ho. Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods.
Phys. Rev. B, 50(3): 1945–1948, 1994.
CrossRef[47]
D.I. Hoult. Sensitivity and power deposition in high-field imaging experiment. J. Magn. Reson. Imag., 12:46–67, 200.
[48]
J.S. Tropp. Image brightening in samples of high dielectric constant.
J. Magnetic. Resonance, 167(1):12–24, 2004.
CrossRef[49]
P. Bochev, C. Garasi, J. Hu, A. Robinson, and R. Tuminaro. An improved algebraic multigrid method for solving maxwell’s equations.
SIAM J. Sci. Comp., 25(2):623–642, 2003.
CrossRefMathSciNetMATH[50]
S. Reitzinger and J. Schoberl. An algebraic multigrid method for finite element discretization with edge elements.
Numer. Linear Algebra Appl., 9:223–238, 2002.
CrossRefMathSciNetMATH