1.

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. *LAPACK Users’ Guide*. SIAM, 1992.

2.

W. Achtziger, M. Bendsoe, A. Ben-Tal, and J. Zowe. Equivalent displacement based formulations for maximum strength truss topology design.

*Impact of Computing in Science and Engineering*, 4(4):315–45, December 1992.

MathSciNetCrossRefMATH3.

M. Avriel, R. Dembo, and U. Passy. Solution of generalized geometric programs.

*International Journal for Numerical Methods in Engineering*, 9:149–168, 1975.

MathSciNetCrossRefMATH4.

M. Abdi, H. El Nahas, A. Jard, and E. Moulines. Semidefinite positive relaxation of the maximum-likelihood criterion applied to multiuser detection in a CDMA context.

*IEEE Signal Processing Letters*, 9(6):165–167, June 2002.

CrossRef5.

F. Alizadeh. Interior point methods in semidefinite programming with applications to combinatorial optimization.

*SIAM Journal on Optimization*, 5(1):13–51, February 1995.

MATHMathSciNetCrossRef6.

B. Alkire and L. Vandenberghe. Convex optimization problems involving finite autocorrelation sequences.

*Mathematical Programming*, Series A, 93:331–359, 2002.

MathSciNetCrossRefMATH7.

E. Andersen and Y. Ye. On a homogeneous algorithm for the monotone complementarity problem.

*Mathematical Programming*, 84:375–400, 1999.

MathSciNetCrossRefMATH8.

S. Boyd and C. Barratt. *Linear Controller Design: Limits of Performance*. Prentice-Hall, 1991.

9.

M. Bendsoe, A. Ben-Tal, and J. Zowe. Optimization methods for truss geometry and topology design.

*Structural Optimization*, 7:141–159, 1994.

CrossRef10.

C. Bischof, A. Carle, G. Corliss, A. Grienwank, and P. Hovland. ADIFOR: Generating derivative codes from Fortran programs. *Scientific Programming*, pages 1–29, December 1991.

11.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. *Linear Matrix Inequalities in System and Control Theory*. SIAM, 1994.

12.

S. Benson. DSDP 4.5: A daul scaling algorithm for semidefinite programming. Web site: http://www-unix.mcs.anl.gov/~benson/dsdp/, March 2002.

13.

D. Bertsekas.

*Nonlinear Programming*. Athena Scientific, Belmont, Massachusetts, 1995.

MATH14.

R. Byrd, N. Gould, J. Norcedal, and R. Waltz. An active-set algorithm for nonlinear programming using linear programming and equality constrained subproblems. Technical Report OTC 2002/4, Optimization Technology Center, Northwestern University, October 2002.

15.

O. Bahn, J. Goffin, J. Vial, and O. Du Merle. Implementation and behavior of an interior point cutting plane algorithm for convex programming: An application to geometric programming. Working Paper, University of Geneva, Geneva, Switzerland, 1991.

16.

S. Boyd, M. Hershenson, and T. Lee. Optimal analog circuit design via geometric programming, 1997. Preliminary Patent Filing, Stanford Docket S97–122.

17.

R. Banavar and A. Kalele. A mixed norm performance measure for the design of multirate filterbanks.

*IEEE Transactions on Signal Processing*, 49(2):354–359, February 2001.

CrossRef18.

A. Brooke, D. Kendrick, A. Meeraus, and R. Raman. *GAMS: A User’s Guide*. The Scientific Press, South San Francisco, 1998. Web site: http://www.gams.com/docs/gams/GAMSUsersGuide.pdf.

19.

J. Borwein and A. Lewis. Duality relationships for entropy-like minimization problems.

*SIAM J. Control and Optimization*, 29(2):325–338, March 1991.

MathSciNetCrossRefMATH20.

D. Bertsimas and J. Nino-Mora. Optimization of multiclass queuing networks with changeover times via the achievable region approach: part ii, the multistation case. *Mathematics of Operations Research*, 24(2), May 1999.

21.

D. Bertsekas, A. Nedic, and A. Ozdaglar. *Convex Analysis and Optimization*. Athena Scientific, Nashua, New Hampshire, 2004.

22.

B. Borchers. CDSP, a C library for semidefinite programming.

*Optimization Methods and Software*, 11:613–623, 1999.

MATHMathSciNet23.

A. Ben-Tal and M. Bendsoe. A new method for optimal truss topology design. *SIAM J. Optim.*, 13(2), 1993.

24.

A. Ben-Tal, M. Kocvara, A. Nemirovski, and J. Zowe. Free material optimization via semidefinite programming: the multiload case with contact conditions.

*SIAM Review*, 42(4):695–715, 2000.

MathSciNetCrossRefMATH25.

A. Ben-Tal and A. Nemirovski. Interior point polynomial time method for truss topology design.

*SIAM Journal on Optimization*, 4(3):596–612, August 1994.

MathSciNetCrossRefMATH26.

A. Ben-Tal and A. Nemirovski. Robust truss topology design via semidefinite programming.

*SIAM J. Optim.*, 7(4):991–1016, 1997.

MathSciNetCrossRefMATH27.

A. Ben-Tal and A. Nemirovski. Structural design via semidefinite programming. In *Handbook on Semidefinite Programming*, pages 443–467. Kluwer, Boston, 2000.

28.

S. Boyd and L. Vandenberghe. Semidefinite programming relaxations of non-convex problems in control and combinatorial optimization. In A. Paulraj, V. Roychowdhuri, and C. Schaper, editors, *Communications, Computation, Control and Signal Processing: a Tribute to Thomas Kailath*, chapter 15, pages 279–288. Kluwer Academic Publishers, 1997.

29.

S. Boyd and L. Vandenberghe. *Convex Optimization*. Cambridge University Press, 2004.

30.

P. Biswas and Y. Ye. Semidefinite programming for ad hoc wireless sensor network localization. Technical report, Stanford University, April 2004. Web site: http: //www.stanford.edu/~yyye/adhocn4.pdf.

31.

A. Conn, N. Gould, D. Orban, and Ph. Toint. A primal-dual trust-region algorithm for non-convex nonlinear programming.

*Mathematical Programming*, 87:215–249, 2000.

MathSciNetCrossRefMATH32.

A. Conn, N. Gould, and Ph. Toint. *LANCELOT: a Fortran Package for Large-Scale Nonlinear Optimization (Release A)*, volume 17 of *Springer Series in Computational Mathematics*. Springer Verlag, 1992.

33.

A. Conn, N. Gould, and Ph. Toint.

*Trust-Region Methods*. Series on Optimization. SIAM/MPS, Philadelphia, 2000.

MATH34.

J. Chinneck. MProbe 5.0 (software package). Web site: http://www.sce.carleton.ca/facuity/chinneck/mprobe.html, December 2003.

35.

G. Calafiore and M. Indri. Robust calibration and control of robotic manipulators. In *American Control Conference*, pages 2003–2007, 2000.

36.

C. Crusius. *A parser/solver for convex optimization problems*. PhD thesis, Stanford University, 2002.

37.

T. Terlaky C. Roos and J.-Ph. Vial. *Interior Point Approach to Linear Optimization: Theory and Algorithms*. John Wiley & Sons, New York, NY, 1997.

38.

G. B. Dantzig. *Linear Programming and Extensions*. Princeton University Press, 1963.

39.

J. Dawson, S. Boyd, M. Hershenson, and T. Lee. Optimal allocation of local feedback in multistage amplifiers via geometric programming.

*IEEE Journal of Circuits and Systems I*, 48(1):1–11, January 2001.

CrossRef40.

M. Dahleh and I. Diaz-Bobillo. *Control of Uncertain Systems. A Linear Programming Approach*. Prentice Hall, 1995.

41.

S. Dirkse and M. Ferris. The PATH solver: A non-monotone stabilization scheme for mixed complementarity problems. *Optimization Methods and Software*, 5:123–156, 1995.

42.

Y. Doids, V. Guruswami, and S. Khanna. The 2-catalog segmentation problem. In *Proceedings of SODA*, pages 378–380, 1999.

43.

T. Davidson, Z. Luo, and K. Wong. Design of orthogonal pulse shapes for communications via semidefinite programming. *IEEE Transactions on Communications*, 48(5):1433–1445, May 2000.

44.

G. Dullerud and F. Paganini. *A Course in Robust Control Theory*, volume 36 of *Texts in Applied Mathematics*. Springer-Verlag, 2000.

45.

C. de Souza, R. Palhares, and P. Peres. Robust

*H*
_{∞} filter design for uncertain linear systems with multiple time-varying state delays.

*IEEE Transactions on Signal Processing*, 49(3):569–575, March 2001.

MathSciNetCrossRef46.

A. Doherty, P. Parrilo, and F. Spedalieri. Distinguishing separable and entangled states. *Physical Review Letters*, 88(18), 2002.

47.

B. Dumitrescu, I. Tabus, and P. Stoica. On the parameterization of positive real sequences and MA parameter estimation.

*IEEE Transactions on Signal Processing*, 49(11):2630–2639, November 2001.

MathSciNetCrossRef48.

R. Duffin. Linearizing geometric programs.

*SIAM Review*, 12:211–227, 1970.

MATHMathSciNetCrossRef49.

C. Du, L. Xie, and Y. Soh.

*H*
_{∞} filtering of 2-D discrete systems.

*IEEE Transactions on Signal Processing*, 48(6): 1760–1768, June 2000.

CrossRefMATH50.

H. Du, L. Xie, and Y. Soh.

*H*
_{∞} reduced-order approximation of 2-D digital filters.

*IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications*, 48(6):688–698, June 2001.

CrossRefMATH51.

Laurent El Ghaoui, Jean-Luc Commeau, Francois Delebecque, and Ramine Nikoukhah. LMITOOL 2.1 (software package). Web site: http://robotics.eecs.berkeley.edu/~elghaoui/lmitool/lmitool.html, March 1999.

52.

J. Ecker. Geometric programming: methods, computations and applications.

*SIAM Rev.*, 22(3):338–362, 1980.

MATHMathSciNetCrossRef53.

J.-P. A. Haeberly F. Alizadeh and M. Overton. Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results.

*SIAM J. Optimization*, 8:46–76, 1998.

MathSciNet54.

M. Fu, C. de Souza, and Z. Luo. Finite-horizon robust Kalman filter design.

*IEEE Transactions on Signal Processing*, 49(9):2103–2112, September 2001.

MathSciNetCrossRef55.

U. Feige and M. Goemans. Approximating the value of two prover proof systems, with applications to max 2sat and max dicut. In *Proceedings of the 3nd Israel Symposium on Theory and Computing Systems*, pages 182–189, 1995.

56.

R. Fourer, D. Gay, and B. Kernighan. *AMPL: A Modeling Language for Mathematical Programming*. Duxbury Press, December 1999.

57.

A. Frieze and M. Jerrum. Improved approximation algorithms for max

*k*-cut and max bisection.

*Algorithmica*, 18:67–81, 1997.

MathSciNetMATH58.

K. Fujisawa, M. Kojima, K. Nakata, and M. Yamashita. SDPA (Semi-Definite Programming Algorithm) user’s manual—version 6.00. Technical report, Tokyo Insitute of Technology, July 2002.

59.

U. Feige and M. Langberg. Approximation algorithms for maximization problems arising in graph partitioning.

*Journal of Algorithms*, 41:174–211, 2001.

MathSciNetCrossRefMATH60.

U. Feige and M. Langberg. The *rpr*
^{2} rounding technique for semidefinte programs. In *ICALP*, Lecture Notes in Computer Science. Springer, Berlin, 2001.

61.

R. Fourer. Nonlinear programming frequently asked questions. Web site: http://www-unix.mcs.anl.gov/otc/Guide/faq/nonlinear-programming%-iaq.html, 2000.

62.

R. Freund. Polynomial-time algorithms for linear programming based only on primal scaling and projected gradients of a potential function.

*Mathematical Programming*, 51:203–222, 1991.

MATHMathSciNetCrossRef63.

Frontline Systems, Inc. Premium Solver Platform (software package). Web site: http://www.solver.com, September 2004.

64.

E. Fridman and U. Shaked. A new

*H*
_{∞} filter design for linear time delay systems.

*IEEE Transactions on Signal Processing*, 49(11):2839–2843, July 2001.

MathSciNetCrossRef65.

J. Geromel. Optimal linear filtering under parameter uncertainty.

*IEEE Transactions on Signal Processing*, 47(1):168–175, January 1999.

MATHMathSciNetCrossRef66.

O. Güler and R. Hauser. Self-scaled barrier functions on symmetric cones and their classification.

*Foundations of Computational Mathematics*, 2:121–143, 2002.

MathSciNetMATH67.

D. Goldfarb and G. Iyengar. Robust portfolio selection problems. Technical report, Computational Optimization Research Center, Columbia University, March 2002. Web site: http://www.corc.ieor.columbia.edu/reports/techreports/tr-2002-03.pdf.

68.

D. Goldfarb and G. Iyengar. Robust quadratically constrained problems program. Technical Report TR-2002-04, Department of IEOR, Columbia University, New York, NY USA, 2002.

69.

P. Gill, W. Murray, and M. Saunders. SNOPT: An sqp algorithm for large-scale constrained optimization.

*SIAM Journal on Optimization*, 12:979–1006, 2002.

MathSciNetCrossRefMATH70.

P. Gill, W. Murray, M. Saunders, and M. Wright. User’s guide for NPSOL 5.0: A FORTRAN package for nonlinear programming. Technical Report SOL 86-1, Systems Optimization Laboratory, Stanford University, July 1998. Web site: http://www.sbsi-sol-optimize.com/manuals/NPSOL%205-0%20Manual.p%df.

71.

P. Gill, W. Murray, and M. Wright.

*Practical Optimization*. Academic Press, London, 1981.

MATH72.

J. Geromel and M. De Oliveira.

*H*
_{2}/

*H*
_{∞} robust filtering for convex bounded uncertain systems.

*IEEE Transactions on Automatic Control*, 46(1):100–107, January 2001.

CrossRefMATH73.

C. Gonzaga. Path following methods for linear programming.

*SIAM Review*, 34(2):167–227, 1992.

MATHMathSciNetCrossRef74.

M. Grant. *Disciplined Convex Programming*. PhD thesis, Department of Electrical Engineering, Stanford University, December 2004.

75.

D. Guo, L. Rasmussen, S. Sun, and T. Lim. A matrix-algebraic approach to linear parallel interference cancellation in CDMA.

*IEEE Transactions on Communications*, 48(1):152–161, January 2000.

CrossRef76.

G. Golub and C. Van Loan.

*Matrix Computations*. Johns Hopkins Univ. Press, Baltimore, second edition, 1989.

MATH77.

M. Goemans and D. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming.

*Journal of the ACM*, 42:1115–1145, 1995.

MathSciNetCrossRefMATH78.

M. Hershenson, S. Boyd, and T. Lee. Optimal design of a CMOS op-amp via geometric programming. *IEEE Transactions on Computer-Aided Design*, January 2001.

79.

L. Huaizhong and M. Fu. A linear matrix inequality approach to robust

*H*
_{∞} filtering.

*IEEE Transactions on Signal Processing*, 45(9):2338–2350, September 1997.

CrossRef80.

M. Hershenson, S. Mohan, S. Boyd, and T. Lee. Optimization of inductor circuits via geometric programming. In *Proceedings 36th IEEE/ACM Integrated Circuit Design Automation Conference*, 1999.

81.

P. Hovland, B. Norris, and C. Bischof. ADIC (software package), November 2003. http://www-fp.mcs.anl.gov/adic/.

82.

L. Han, J. Trinkle, and Z. Li. Grasp analysis as linear matrix inequality problems.

*IEEE Transactions on Robotics and Automation*, 16(6):663–674, December 2000.

CrossRef83.

J.-B. Hiriart-Urruty and C. Lemaréchal. *Convex Analysis and Minimization Algorithms I*, volume 305 of *Grundlehren der mathematischen Wissenschaften*. Springer-Verlag, New York, 1993.

84.

J.-B. Hiriart-Urruty and C. Lemaréchal.

*Convex Analysis and Minimization Algorithms II: Advanced Theory and Bundle Methods*, volume 306 of

*Grundlehren der mathematischen Wissenschaften*. Springer-Verlag, New York, 1993.

MATH85.

Q. Han, Y. Ye, and J. Zhang. An improved rounding method and semidefinite programming relaxation for graph partition.

*Math. Programming*, 92:509–535, 2002.

MathSciNetCrossRefMATH86.

F. Jarre, M. Kocvara, and J. Zowe. Optimal truss design by interior point methods.

*SIAM J. Optim.*, 8(4):1084–1107, 1998.

MathSciNetCrossRefMATH87.

F. Jarre and M. Saunders. A practical interior-point method for convex programming.

*SIAM Journal on Optimization*, 5:149–171, 1995.

MathSciNetCrossRefMATH88.

N. Karmarkar. A new polynomial-time algorithm for linear programming.

*Combinatorica*, 4(4):373–395, 1984.

MATHMathSciNet89.

M. Kojima, S. Mizuno, and A. Yoshise. An

*O*(√

*nL*)-iteration potential reduction algorithm for linear complementarity problems.

*Mathematical Programming*, 50:331–342, 1991.

MathSciNetCrossRefMATH90.

J. Kleinberg, C. Papadimitriou, and P. Raghavan. Segmentation problems. In *Proceedings of the 30th Symposium on Theory of Computation*, pages 473–482, 1998.

91.

J. Keuchel, C. Schnörr, C. Schellewald, and D. Cremers. Binary partitioning, perceptual grouping, and restoration with semidefinite programming.

*IEEE Transactions on Pattern Analysis and Machine Intelligence*, 25(11):1364–1379, November 2003.

CrossRef92.

K. Kortanek, X. Xu, and Y. Ye. An infeasible interior-point algorithm for solving primal and dual geometric progams.

*Mathematical Programming*, 1:155–181, 1997.

MathSciNetCrossRef93.

K. Kortanek, X. Xu, and Y. Ye. An infeasible interior-point algorithm for solving primal and dual geometric programs.

*Mathematical Programming*, 76:155–182, 1997.

MathSciNetCrossRef94.

M. Kocvara, J. Zowe, and A. Nemirovski. Cascading-an approach to robust material optimization.

*Computers and Structures*, 76:431–442, 2000.

CrossRef95.

J. Lasserre. Global optimization with polynomials and the problem of moments.

*SIAM Journal of Optimization*, 11:796–817, 2001.

MATHMathSciNetCrossRef96.

J. Lasserre. Bounds on measures satisfying moment conditions.

*Annals of Applied Probability*, 12:1114–1137, 2002.

MATHMathSciNetCrossRef97.

J. Lasserre. Semidefinite programming vs. LP relaxation for polynomial programming.

*Mathematics of Operations Research*, 27(2):347–360, May 2002.

MATHMathSciNetCrossRef98.

H. Lebret and S. Boyd. Antenna array pattern synthesis via convex optimization.

*IEEE Transactions on Signal Processing*, 45(3):526–532, March 1997.

CrossRef99.

Lindo Systems, Inc. LINGO version 8.0 (software package). Web site: http: //www.lindo.com, September 2004.

100.

J. Löfberg. YALMIP verison 2.1 (software package). Web site: http://www.control.isy.liu.se/~johanl/yalmip.html, September 2001.

101.

L. Lovasz. *An Algorithmic Theory of Numbers, Graphs and Convexity*, volume 50 of *CBMS-NSF Regional Conference Series in Applied Mathematics*, SIAM, Philadelphia, 1986.

102.

Z.-Q. Luo, J. Sturm, and S. Zhang. Duality and self-duality for conic con-vex programming. Technical report, Department of Electrical and Computer Engineering, McMaster University, 1996.

103.

W. Lu. A unified approach for the design of 2-D digital filters via semidefinite programming.

*IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications*, 49(6):814–826, June 2002.

MathSciNetCrossRef104.

M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-order cone programming.

*Linear Algebra and its Applications*, 284:193–228, November 1998. Special issue on Signals and Image Processing.

MathSciNetCrossRefMATH105.

R. Monteiro and I. Adler. Interior path following primal-dual algorithms: Part I: Linear programming.

*Mathematical Programming*, 44:27–41, 1989.

MathSciNetCrossRefMATH106.

The MathWorks, Inc. *PRO-MATLAB User’s Guide*. The MathWorks, Inc., 1990.

107.

M. Mahmoud and A. Boujarwah. Robust

*H*
_{∞} filtering for a class of linear parameter-varying systems.

*IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications*, 48(9):1131–1138, September 2001.

MathSciNetCrossRefMATH108.

G. Millerioux and J. Daafouz. Global chaos synchronization and robust filtering in noisy context.

*IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications*, 48(10):1170–1176, October 2001.

MathSciNetCrossRef109.

N. Megiddo. Pathways to the optimal set in linear programming. In N. Megiddo, editor, *Progress in Mathematical Programming: Interior Point and Related Methods*, pages 131–158. Springer Verlag, New York, 1989. Identical version in: *Proceedings of the 6th Mathematical Programming Symposium of Japan*, Nagoya, Japan, 1–35, 1986.

110.

MOSEK ApS. Mosek (software package). Web site: http://www.mosek.com, July 2001.

111.

S. Mahajan and H. Ramesh. Derandomizing semidefinite programming based approximation algorithms.

*SIAM J. of Computing*, 28:1641–1663, 1999.

MathSciNetCrossRefMATH112.

B. Murtaugh and M. Saunders. MINOS 5.5 user’s guide. Technical report, Systems Optimizaiton Laboratory, Stanford University, July 1998. Web site: http://www.sbsi-sol-optimize.com/manuals/Minos%205-5%20Manual.p%df.

113.

J. Moré and D. Sorensen. NMTR (software package), March 2000. Web site: http://www-unix.mcs.anl.gov/~more/nmtr/.

114.

M. Milanese and A. Vicino. Optimal estimation theory for dynamic systems with set membership uncertainty: An overview.

*Automatica*, 27(6):997–1009, November 1991.

MathSciNetCrossRefMATH115.

Y. Nesterov.

*Introductory Lectures on Convex Optimization: A Basic Course*, volume 87 of

*Applied Optimization*. Kluwer, Boston, 2004.

MATH116.

I. Nenov, D. Fylstra, and L. Kolev. Convexity determination in the microsoft excel solver using automatic differentiation techniques. In *The 4th Internation Conference on Automatic Differentiation*, 2004.

117.

Yu. Nesterov and A. Nemirovsky. A general approach to polynomial-time algorithms design for convex programming. Technical report, Centr. Econ. & Math. Inst., USSR Acad. Sci., Moscow, USSR, 1988.

118.

Yu. Nesterov and A. Nemirovsky. *Interior-Point Polynomial Algorithms in Convex Programming: Theory and Algorithms*, volume 13 of *Studies in Applied Mathematics*. Society of Industrial and Applied Mathematics (SIAM) Publications, Philadelphia, PA 19101, USA, 1993.

119.

Yu. Nesterov, O. Pèton, and J.-Ph. Vial. Homogeneous analytic center cutting plane methods with approximate centers. In F. Potra, C. Roos, and T. Terlaky, editors, *Optimization Methods and Software*, pages 243–273, November 1999. Special Issue on Interior Point Methods.

120.

S. Nash and A. Sofer. A barrier method for large-scale constrained optimization.

*ORSA Journal on Computing*, 5:40–53, 1993.

MathSciNetMATH121.

Yu. Nesterov and M. Todd. Self-scaled barriers and interior-point methods for convex programming.

*Mathematics of Operations Research*, 22:1–42, 1997.

MathSciNetCrossRefMATH122.

J. Nocedal and S. Wright.

*Numerical Optimization*. Springer Series in Operations Research. Springer, New York, 1999.

MATH123.

D. Orban and R. Fourer. DrAmpl: a meta-solver for optimization. Technical report, Ecole Poytechnique de Montreal, 2004.

124.

M. Overton and R. Womersley. On the sum of the largest eigenvalues of a symmetric matrix.

*SIAM Journal on Matrix Analysis and Applications*, 13(1):41–45, January 1992.

MathSciNetCrossRefMATH125.

P. Parrilo. Semidefinite programming relaxations for semialgebraic problems.

*Mathematical Programming*, Series B, 96(2):293–320, 2003.

MATHMathSciNetCrossRef126.

G. Pataki. Geometry of cone-optimization problems and semi-definite programs. Technical report, GSIA Carnegie Mellon University, Pittsburgh, PA, 1994.

127.

J. Park, H. Cho, and D. Park. Design of GBSB neural associative memories using semidefinite programming.

*IEEE Transactions on Neural Networks*, 10(4):946–950, July 1999.

CrossRef128.

R. Palhares, C. de Souza, and P. Dias Peres. Robust

*H*
_{∞} filtering for uncertain discrete-time state-delayed systems.

*IEEE Transactions on Signal Processing*, 48(8):1696–1703, August 2001.

CrossRef129.

R. Palhares and P. Peres. LMI approach to the mixed

*H*
_{2}/

*H*
_{∞} filtering design for discrete-time uncertain systems.

*IEEE Transactions on Aerospace and Electronic Systems*, 37(1):292–296, January 2001.

CrossRef130.

S. Prajna, A. Papachristodoulou, and P. Parrilo. *SOSTOOLS: Sum of squares optimization toolbox for MATLAB*, 2002. Available from http://www.cds.caltech.edu/sostools and http://www.aut.ee.ethz.ch/parrilo/sostools.

131.

O. Pèton and J.-P. Vial. A tutorial on ACCPM: User’s guide for version 2.01. Technical Report 2000.5, HEC/Logilab, University of Geneva, March 2001. See also the http://ecolu-info.unige. ch/~logilab/software/accpm/accpm.html.

132.

E. Rimon and S. Boyd. Obstacle collision detection using best ellipsoid fit.

*Journal of Intelligent and Robotic Systems*, 18:105–126, 1997.

CrossRefMATH133.

J. Renegar. A polynomial-time algorithm, based on Newton’s method, for linear programming.

*Mathematical Programming*, 40:59–93, 1988.

MATHMathSciNetCrossRef134.

B. Radig and S. Florczyk. *Evaluation of Convex Optimization Techniques for the Weighted Graph-Matching Problem in Computer Vision*, pages 361–368. Springer, December 2001.

135.

L. Rasmussen, T. Lim, and A. Johansson. A matrix-algebraic approach to successive interference cancellation in CDMA.

*IEEE Transactions on Communications*, 48(1):145–151, January 2000.

CrossRef136.

M. Rijckaert and X. Martens. Analysis and optimization of the williams-otto process by geometric programming.

*AIChE Journal*, 20(4):742–750, July 1974.

CrossRef137.

R. Rockafellar.

*Convex Analysis*. Princeton Univ. Press, Princeton, New Jersey, second edition, 1970.

MATH138.

E. Rosenberg. *Globally Convergent Algorithms for Convex Programming with Applications to Geometric Programming*. PhD thesis, Department of Operations Research, Stanford University, 1979.

139.

P. Stoica, T. McKelvey, and J. Mari. Ma estimation in polynomial time.

*IEEE Transactions on Signal Processing*, 48(7): 1999–2012, July 2000.

MathSciNetCrossRefMATH140.

J. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-metric cones.

*Optimization Methods and Software*, 11:625–653, 1999.

MATHMathSciNet141.

J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vande-walle. Least squares support vector machines, 2002.

142.

J. Stoer and C. Witzgall. *Convexity and Optimization in Finite Dimensions I*. Springer-Verlag, 1970.

143.

U. Shaked, L. Xie, and Y. Soh. New approaches to robust minimum variance filter design.

*IEEE Transactions on Signal Processing*, 49(11):2620–2629, November 2001.

MathSciNetCrossRef144.

H. Tuan, P. Apkarian, and T. Nguyen. Robust and reduced-order filtering: new LMI-based characterizations and methods.

*IEEE Transactions on Signal Processing*, 49(12):2975–2984, December 2001.

CrossRef145.

H. Tuan, P. Apkarian, T. Nguyen, and T. Narikiyo. Robust mixed

*H*
_{2}/

*H*
_{∞} filtering of 2-D systems.

*IEEE Transactions on Signal Processing*, 50(7):1759–1771, July 2002.

CrossRef146.

C. Tseng and B. Chen.

*H*
_{∞}, fuzzy estimation for a class of nonlinear discrete-time dynamic systems.

*IEEE Transactions on Signal Processing*, 49(11):2605–2619, November 2001.

CrossRef147.

The Mathworks, Inc. LMI control toolbox 1.0.8 (software package). Web site: http://www.mathworks.com/products/lmi, August 2002.

148.

H. Tan and L. Rasmussen. The application of semidefinite programming for detection in CDMA.

*IEEE Journal on Selected Areas in Communications*, 19(8):1442–1449, August 2001.

CrossRef149.

T. Tsuchiya. A polynomial primal-dual path-following algorithm for second-order cone programming. Technical report, The Institute of Statistical Mathematics, Tokyo, Japan, October 1997.

150.

Z. Tan, Y. Soh, and L. Xie. Envelope-constrained

*H*
_{∞} filter design: an LMI optimization approach.

*IEEE Transactions on Signal Processing*, 48(10):2960–2963, October 2000.

MathSciNetCrossRefMATH151.

Z. Tan, Y. Soh, and L. Xie. Envelope-constrained

*H*
_{∞} FIR filter design.

*IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing*, 47(1):79–82, January 2000.

CrossRefMATH152.

R. Tütüncü, K. Toh, and M. Todd. SDPT3—a MATLAB software package for semidefinite-quadratic-linear programming, version 3.0. Technical report, Carnegie Mello University, August 2001.

153.

R. Tapia, Y. Zhang, and L. Velazquez. On convergence of minimization methods: Attraction, repulsion and selection.

*Journal of Optimization Theory and Applications*, 107:529–546, 2000.

MathSciNetCrossRefMATH154.

R. Vanderbei. LOQO user’s manual—version 4.05. Technical report, Operations Research and Financial Engineering, Princeton University, October 2000.

155.

L. Vandenberghe and S. Boyd. Semidefinite programming.

*SIAM Review*, 38(1):49–95, March 1996.

MathSciNetCrossRefMATH156.

R. Vanderbei and H. Benson. On forumulating semidefinite programming problems as smooth convex nonlinear optimization problems. Technical Report ORFE-99-01, Operations Research and Financial Engineering, Princeton University, January 2000.

157.

L. Vandenberghe, S. Boyd, and A. El Gamal. Optimal wire and transistor sizing for circuits with non-tree topology. In *Proceedings of the 1997 IEEE/ACM International Conference on Computer Aided Design*, pages 252–259, 1997.

158.

L. Vandenberghe, S. Boyd, and A. El Gamal. Optimizing dominant time constant in RC circuits.

*IEEE Transactions on Computer-Aided Design*, 2(2): 110–125, February 1998.

CrossRef159.

S.-P. Wu and S. Boyd. SDPSOL: A parser/solver for semidefinite programs with matrix structure. In L. El Ghaoui and S.-I. Niculescu, editors, *Recent Advances in LMI Methods for Control*, chapter 4, pages 79–91. SIAM, 2000.

160.

F. Wang and V. Balakrishnan. Robust Kalman filters for linear time-varying systems with stochastic parametric uncertainties.

*IEEE Transactions on Signal Processing*, 50(4):803–813, April 2002.

MathSciNetCrossRef161.

S.-P. Wu, S. Boyd, and L. Vandenberghe. FIR filter design via spectral factorization and convex optimization. In B. Datta, editor, *Applied and Computational Control, Signals, and Circuits*, volume 1, pages 215–245. Birkhauser, 1998.

162.

M. Wright. Some properties of the Hessian of the logarithmic barrier function.

*Mathematical Programming*, 67:265–295, 1994.

MATHMathSciNetCrossRef163.

S. Wright. *Primal Dual Interior Point Methods*. Society of Industrial and Applied Mathematics (SIAM) Publications, Philadelphia, PA 19101, USA, 1999.

164.

J. Weickert and Christoph Schnörr. A theoretical framework for convex regularizers in pde-based computation of image motion.

*International Journal of Computer Vision, Band 45*, 3:245–264, 2001.

CrossRef165.

S. Wang, L. Xie, and C. Zhang.

*H2* optimal inverse of periodic FIR digital filters.

*IEEE Transactions on Signal Processing*, 48(9):2696–2700, September 2000.

CrossRef166.

Y. Ye. *Interior-point algorithms: Theory and practice*. John Wiley & Sons, New York, NY, 1997.

167.

Y. Ye. A path to the arrow-debreu competitive market equilibrium. Technical report, Stanford University, February 2004. Web site: http://www.stanford. edu/~yyye/arrow-debreu2.pdf.

168.

F. Yang and Y. Hung. Robust mixed

*H*
_{2}/

*H*
_{∞} filtering with regional pole assignment for uncertain discrete-time systems.

*IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications*, 49(8): 1236–1241, August 2002.

MathSciNetCrossRef169.

Y. Ye, M. Todd, and S. Mizuno. An

*O*(√

*nL*)-iteration homogeneous and self-dual linear programming algorithm.

*Mathematics of Operations Research*, 19(1):53–67, 1994.

MathSciNetMATH170.

Y. Ye and J. Zhang. Approximation for dense-n/2-subgraph and the complement of min-bisection. *Manuscript*, 1999.

171.

S. Zhang. A new self-dual embedding method for convex programming. Technical report, Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, October 2001.

172.

M. Zibulevsky. Pattern recognition via support vector machine with computationally efficient nonlinear transform. Technical report, The University of New Mexico, Computer Science Department, 1998. Web site: http: //iew3.technion.ac.il/~mcib/nipspsvm.ps.gz.

173.

J. Zowe, M. Kocvara, and M. Bendsoe. Free material optimization via mathematical programming.

*Mathematical Programming*, 9:445–466, 1997.

MathSciNetCrossRef174.

U. Zwick. Outward rotations: a tool for rounding solutions of semidefinite programming relaxations, with applications to max cut and other problems. In *Proceedings of the 31th Symposium on Theory of Computation*, pages 679–687, 1999.

175.

H. Zhou, L. Xie, and C. Zhang. A direct approach to

*H*
_{2} optimal deconvolution of periodic digital channels.

*IEEE Transactions on Signal Processing*, 50(7):1685–1698, July 2002.

CrossRef