[1]

J. Adachi and M. Hasegawa. MOLPHY version 2.3: Programs for molecular phylogenetics based on maximum likelihood. *Computer Science Monographs of Institute of Statistical Mathematics*, 28:1–150, 1996.

[2]

J. Adachi, P. Waddell, W. Martin, and M. Hasegawa. Plastid genome phylogeny and a model of amino acid substitution for proteins encoded by chloroplast DNA. *Journal of Molecular Evolution*, 50:348–358, 2000.

[3]

H. Akaike. Information theory as an extension of the maximum likelihood principle. In B. N. Petrov and F. Csaki, editors, *Second International Symposium on Information Theory*, pages 267–281. Akademiai Kiado, Budapest, 1973.

[4]

U. Arnason, A. Gullberg, and A. Janke. Phylogenetic analyses of mitochondrial DNA suggest a sister group relationship between Xenartha (Edentata) and Ferungulates. *Molecular Biology and Evolution*, 14:762–768, 1997.

[5]

E. T. Bell. Exponential numbers.

*American Mathematical Monthly*, 41:411–419, 1934.

MATHMathSciNet[6]

J. O. Berger, B. Liseo, and R. L. Wolpert. Integrated likelihood methods for eliminating nuisance parameters.

*Statistical Science*, 14:1–28, 1999.

CrossRefMathSciNet[7]

M. J. Bishop and A. E. Friday. Tetrapod relationships: The molecular evidence. In C. Patterson, editor, *Molecules and Morphology in Evolution*, pages 123–139. Cambridge University Press, Cambridge, England, 1987.

[8]

Y. Cao, A. Janke, P. J. Waddell, M. Westerman, O. Takenaka, S. Murata, N. Okada, S. Paabo, and M. Hasegawa. Conflict amongst individual mitochondrial proteins in resolving the phylogeny of eutherian orders. *Journal of Molecular Evolution*, 47:307–322, 1998.

[9]

J. T. Chang. Full reconstruction of Markov models on evolutionary tree: Identifiability and consistency.

*Mathematical Bioscience*, 137:51–73, 1996.

MATHMathSciNet[10]

D. R. Cox. Further results on tests of families of alternate hypotheses.

*Journal of the Royal Statistical Society B*, 24:406–424, 1962.

MATH[11]

M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary change in proteins. In *Atlas of Protein Sequence and Structure*, volume 5, pages 345–352. National Biomedical Research Foundation, Washington, DC, 1978. Suppl. 3.

[12]

M. W. Dimmic, J. S. Rest, D. P. Mindell, and D. Goldstein. rtREV: An amino acid substitution matrix for inference of retrovirus and reverse transcriptase phylogeny.

*Journal of Molecular Evolution*, 55:65–73, 2002.

CrossRef[13]

J. Felsenstein. *Statistical inference and the estimation of phylogenies*. PhD thesis, University of Chicago, 1968.

[14]

J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood approach.

*Journal of Molecular Evolution*, 17:368–376, 1981.

CrossRef[15]

J. Felsenstein. Distance methods for inferring phylogenies: A justification. *Evolution*, 38:16–24, 1984.

[16]

J. Felsenstein. Confidence limits on phylogenies: An approach using the bootstrap. *Evolution*, 39:783–791, 1985.

[17]

P. G. Foster. Modeling compositional heterogeneity.

*Systematic Biology*, 53:485–495, 2004.

CrossRef[18]

N. Galtier and M. Gouy. Inferring pattern and process: Maximum-likelihood implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis. *Molecular Biology Evolution*, 15:871–879, 1998.

[19]

N. Galtier, N. Tourasse, and M. Gouy. A nonhyperthermophilic common ancestor to extant life forms.

*Science*, 283:220–221, 1999.

CrossRef[20]

N. Goldman. Maximum likelihood inference of phylogenetic trees with special reference to a Poisson process model of DNA substitution and to parsimony analyses. *Systematic Zoology*, 39:345–361, 1990.

[21]

N. Goldman and Z. Yang. A codon-based model of nucleotide substitution for protein-coding DNA sequences. *Molecular Biology and Evolution*, 11:725–736, 1994.

[22]

P. J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.

*Biometrika*, 82:711–732, 1995.

MATHMathSciNet[23]

M. Hasegawa, H. Kishino, and T. Yano. Dating the human-ape splitting by a molecular clock of mitochondrial DNA. *Journal of Molecular Evolution*, 22:160–174, 1985.

[24]

M. Hasegawa, T. Yano, and H. Kishino. A new molecular clock of mitochondrial DNA and the evolution of Hominoids. *Proceedings of the Japan Academy Series B*, 60:95–98, 1984.

[25]

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications.

*Biometrika*, 57:97–109, 1970.

MATH[26]

S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from protein blocks. *Proceedings of the National Academy of Sciences, USA*, 89:10915–10919, 1992.

[27]

D. M. Hillis and J. J. Bull. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. *Systematic Biology*, 42:182–192, 1993.

[28]

S. Holmes. Bootstrapping phylogenetic trees: Theory and methods.

*Statistical Science*, 18:241–255, 2003.

MathSciNet[29]

J. P. Huelsenbeck. Performance of phylogenetic methods in simulation. *Systematic Biology*, 44:17–48, 1995.

[30]

J. P. Huelsenbeck. The robustness of two phylogenetic methods: Four taxon simulations reveal a slight superiority of maximum likelihood over neighbor joining. *Molecular Biology and Evolution*, 12:843–849, 1995.

[31]

J. P. Huelsenbeck and K. A. Dyer. Bayesian estimation of positively selected sites.

*Journal of Molecular Evolution*, 58:661–672, 2004.

CrossRef[32]

J. P. Huelsenbeck, B. Larget, and M. E. Alfaro. Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. *Mol. Biol. Evol*, 21:1123–1133, 2004.

[33]

J. P. Huelsenbeck, B. Larget, and D. Swofford. A compound Poisson process for relaxing the molecular clock. *Genetics*, 154:1879–1892, 2000.

[34]

J. P. Huelsenbeck and B. Rannala. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. *Systematic Biology*. In press.

[35]

J. P. Huelsenbeck and F. Ronquist. MrBayes: Bayesian inference of phylogenetic trees.

*Bioinformatics*, 17:754–755, 2001.

CrossRef[36]

H. Jeffreys. *Theory of Probability*. Oxford University Press, Oxford, 1961.

[37]

D. T. Jones, W. R. Taylor, and J. M. Thornton. The rapid generation of mutation data matrices from protein sequences. *Computer Applications in the Biosciences*, 8:275–282, 1992.

[38]

T. H. Jukes and C. R. Cantor. Evolution of protein molecules. In H. N. Munro, editor, *Mammalian Protein Metabolism*, pages 21–123. Academic Press, New York, 1969.

[39]

S. Kim, K. M. Kjer, and C. N. Duckett. Comparison between molecular and morphological-based phylogenies of galerucine/alticine leaf beetles (Coleoptera: Chrysomelidae). *Insect Systematic Evolution*, 34:53–64, 2003.

[40]

M. Kimura. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.

*Journal of Molecular Evolution*, 16:111–120, 1980.

CrossRef[41]

B. Larget and D. Simon. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. *Molecular Biology and Evolution*, 16:750–759, 1999.

[42]

M. S. Y. Lee. Molecular clock calibrations and metazoan divergence dates. *Journal of Molecular Evolution*, 49:385–391, 1999.

[43]

P. O. Lewis. A likelihood approach to estimating phylogeny from discrete morphological character data.

*Systematic Biology*, 50:913–925, 2001.

CrossRef[44]

S. Li. *Phylogenetic tree construction using Markov chain Monte Carlo*. PhD thesis, Ohio State University, Columbus, 1996.

[45]

B. Mau. *Bayesian phylogenetic inference via Markov chain Monte Carlo methods*. PhD thesis, University of Wisconsin, Madison, 1996.

[46]

B. Mau and M. Newton. Phylogenetic inference for binary data on dendrograms using Markov chain Monte Carlo. *Journal of Computational and Graphical Statistics*, 6:122–131, 1997.

[47]

B. Mau, M. Newton, and B. Larget. Bayesian phylogenetic inference via Markov chain Monte Carlo methods.

*Biometrics*, 55:1–12, 1999.

CrossRefMathSciNet[48]

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. W. Teller, and E. Teller. Equations of state calculations by fast computing machines.

*Journal of Chemical Physics*, 21:1087–1091, 1953.

CrossRef[49]

T. Muller and M. Vingron. Modeling amino acid replacement.

*Journal of Computational Biology*, 7:761–776, 2000.

CrossRef[50]

S. V. Muse and B. S. Gaut. A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates with application to the chloroplast genome. *Molecular Biology and Evolution*, 11:715–724, 1994.

[51]

M. Nei, P. Xu, and G. Glazko. Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms.

*Proceedings of the National Academy of Sciences, USA*, 98:2497–2502, 2001.

CrossRef[52]

M. Newton, B. Mau, and B. Larget. Markov chain Monte Carlo for the Bayesian analysis of evolutionary trees from aligned molecular sequences. In F. Seillier-Moseiwitch, T. P. Speed, and M. Waterman, editors, *Statistics in Molecular Biology*. Monograph Series of the Institute of Mathematical Statistics, 1999.

[53]

R. Nielsen. Mapping mutations on phylogenies.

*Systematic Biology*, 51:729–739, 2002.

CrossRef[54]

R. Nielsen and Z. Yang. Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. *Genetics*, 148:929–936, 1998.

[55]

J. A. A. Nylander, F. Ronquist, J. P. Huelsenbeck, and J. L. Nieves-Aldrey. Bayesian phylogenetic analysis of combined data.

*Systematic Biology*, 53:47–67, 2004.

CrossRef[56]

D. Posada and K. A. Crandall. Modeltest: Testing the model of DNA substitution.

*Bioinformatics*, 14:817–818, 1998.

CrossRef[57]

B. Rannala and Z. Yang. Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. *Journal of Molecular Evolution*, 43:304–311, 1996.

[58]

J. S. Rogers. On the consistency of maximum likelihood estimation of phylogenetic trees from nucleotide sequences. *Systematic Biology*, 46:354–357, 1997.

[59]

F. Ronquist and J. P. Huelsenbeck. MrBayes 3: Bayesian phylogenetic inference under mixed models.

*Bioinformatics*, 19:1572–1574, 2003.

CrossRef[60]

M. Schöniger and A. von Haeseler. A stochastic model and the evolution of autocorrelated DNA sequences. *Mol. Phyl. Evol.*, 3:240–247, 1994.

[61]

E. Schröder. Vier combinatorische probleme.

*Z. Math. Phys.*, 15:361–376, 1870.

MATH[62]

M. A. Suchard, R. E. Weiss, and J. S. Sinsheimer. Bayesian selection of continuous-time Markov chain evolutionary models. *Molecular Biology and Evolution*, 18:1001–1013, 2001.

[63]

Y. Suzuki, G. V. Glazko, and M. Nei. Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. *Proceedings of the National Academy of Sciences, USA*, 99:15138–16143, 2002.

[64]

D. L. Swofford. *PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.* Sinauer Associates, Sunderland, MA, 2002.

[65]

N. Takezaki, A. Rzhetsky, and M. Nei. Phylogenetic test of molecular clock and linearized trees. *Molecular Biology and Evolution*, 12:823–833, 1995.

[66]

K. Tamura and M. Nei. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. *Molecular Biology and Evolution*, 10:512–526, 1993.

[67]

S. Tavaré. Some probabilistic and statistical problems on the analysis of DNA sequences.

*Lectures in Mathematics in the Life Sciences*, 17:57–86, 1986.

MATH[68]

J. L. Thorne, H. Kishino, and I. S. Painter. Estimating the rate of evolution of the rate of molecular evolution. *Molecular Biology and Evolution*, 15:1647–1657, 1998.

[69]

L. Tierney. Markov chains for exploring posterior distributions.

*Annals of Statistics*, 22:1701–1762, 1994.

MATHMathSciNet[70]

C. Tuffey and M. Steel. Modeling the covarion hypothesis of nucleotide substitution.

*Mathematical Biosciences*, 147:63–91, 1998.

MathSciNet[71]

S. Whelan and N. Goldman. A general empirical model of protein evolution derived from multiple protein families using a maximum likelihood approach. *Molecular Biology and Evolution*, 18:691–699, 2001.

[72]

Z. Yang. Maximum likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. *Molecular Biology and Evolution*, 10:1396–1401, 1993.

[73]

Z. Yang. PAML: A program package for phylogenetic analysis by maximum likelihood. *Comptuer Applications in Bioscience*, 15:555–556, 1997.

[74]

Z. Yang and B. Rannala. Bayesian phylogenetic inference using DNA sequences: A Markov chain Monte Carlo method. *Molecular Biology and Evolution*, 14:717–724, 1997.

[75]

E. Zuckerkandl and L. Pauling. Molecular disease, evolution, and genetic heterogeneity. In M. Kasha and B. Pullman, editors, *Horizons in Biochemistry*, pages 189–225. Academic Press, New York, 1962.

[76]

E. Zuckerkandl and L. Pauling. Evolutionary divergence and convergence in proteins. In V. Bryson and H. J. Vogel, editors, *Evolving Genes and Proteins*, pages 97–166. Academic Press, New York, 1965.