Partition Identities for the Multiple Zeta Function

  • David M. Bradley
Conference paper

DOI: 10.1007/0-387-24981-8_2

Part of the Developments in Mathematics book series (DEVM, volume 14)
Cite this paper as:
Bradley D.M. (2005) Partition Identities for the Multiple Zeta Function. In: Aoki T., Kanemitsu S., Nakahara M., Ohno Y. (eds) Zeta Functions, Topology and Quantum Physics. Developments in Mathematics, vol 14. Springer, Boston, MA

Abstract

We define a class of expressions for the multiple zeta function, and show how to determine whether an expression in the class vanishes identically. The class of such identities, which we call partition identities, is shown to coincide with the class of identities that can be derived as a consequence of the stuffle multiplication rule for multiple zeta values.

Keywords

Multiple zeta values harmonic algebra quasi-shuffles stuffles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • David M. Bradley
    • 1
  1. 1.Department of Mathematics & StatisticsUniversity of MaineMaineUSA

Personalised recommendations