Skip to main content

Adaptation of Halophilic Archaea to Life at High Salt Concentrations

  • Chapter
Book cover Salinity: Environment - Plants - Molecules

Abstract

The halophilic Archaea (order Halobacteriales) form a diverse group of microorganisms adapted to life at high salt concentrations. The cells contain molar concentrations of K+ and Cl to provide osmotic balance. Enzymes and other proteins require the presence of high salt concentrations for activity and structural stability. Most proteins contain a large excess of acidic amino acids and low amounts of hydrophobic amino acids. The structure resolution of a number of such enzymes by X-ray crystallography and the use of site-directed mutagenesis in recent years has greatly increased our understanding of the adaptation of the Halo-bacteriales to life at high salt concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baxter, R.M., and Gibbons, N.E. (1954) The glycerol dehydrogenases of Pseudomonas salinaria, Vibrio costicolus, and Escherichia coli in relation to bacterial halophilism. Can. J. Biochem. Physiol. 32, 206–217.

    PubMed  CAS  Google Scholar 

  • Baxter, R.M., and Gibbons, N.E. (1956) Effects of sodium and potassium chloride on certain enzymes of Micrococcus halodenitrificans and Pseudomonas salinaria. Can. J. Microbiol 2, 599–606.

    PubMed  CAS  Google Scholar 

  • Bayley, S.T., and Griffiths, E. (1968) A cell-free amino acid incorporating system for an extremely halophilic bacterium. Biochemistry 7, 2249–2256.

    Article  PubMed  CAS  Google Scholar 

  • Bayley, S.T., and Morton, R.A. (1978) Recent developments in the molecular biology of extremely halophilic bacteria. CRC Crit. Rev. Microbiol 6, 151–205.

    PubMed  CAS  Google Scholar 

  • Brown, A.D., and Duong, A. (1982) State of water in extremely halophilic bacteria: heat of dilution of Halobacterium halobium. J. Membrane Biol. 64, 187–193.

    Article  Google Scholar 

  • Brown, A.D., and Sturtevant, J.M. (1980) State of water in extremely halophilic bacteria: freezing transitions of Halobacterium halobium observed by differential scanning calorimetry. J. Membrane Biol. 54, 21–30.

    Article  CAS  Google Scholar 

  • Christian, J.H.B., and Waltho, J.A. (1962) Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochim. Biophys. Acta 65, 506–508.

    Article  PubMed  CAS  Google Scholar 

  • Dennis, P.P., and Shimmin, L.C. (1997) Evolutionary divergence and salinity-mediated selection in halophilic archaea. Microbiol. Mol. Biol. Rev. 61, 90–104.

    PubMed  CAS  Google Scholar 

  • Desmarais, D., Jablonski, P.E., Fedarko, N.S., and Roberts, M.F. (1997) 2-Sulfotrehalose, a novel osmolyte in haloalkaliphilic Archaea. J. Bacteriol 179, 3146–3153.

    PubMed  CAS  Google Scholar 

  • Duschl, A., and Wagner, G. (1986) Primary and secondary chloride transport in Halobacterium halobium. J. Bacteriol. 168, 548–552.

    PubMed  CAS  Google Scholar 

  • Dundas, I.E.D. (1977) Physiology of Halobacteriaceae. Adv. Microb. Physiol. 15, 85–120.

    PubMed  CAS  Google Scholar 

  • Dym, O., Mevarech, M., and Sussman, J.L. (1995) Structural features that stabilize halophilic malate dehydrogenase from an archaebacterium. Science 267, 1344–1346.

    CAS  Google Scholar 

  • Ebel, C., Faou, B., Franzetti, B., Kernel, B., Madern, D., Pascu, M., Pfister, C., Richard, S., and Zaccai, G. (1999) Molecular interactions in extreme halophiles — the solvation-stabilization hypothesis for halophilic proteins, in A. Oren (ed.), Microbiology and Biogeochemistry of Hypersaline Environments. CRC Press, Boca Raton, pp. 227–237.

    Google Scholar 

  • Eisenberg, H. (1995) Life in unusual environments: progress in understanding the structure and function of enzymes from extreme halophilic bacteria. Arch. Biochem. Biophys. 318, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg, H., and Wachtel, E.J. (1987) Structural studies of halophilic proteins, ribosomes, and organelles of bacteria adapted to extreme salt concentrations. Ann. Rev. Biophys. Biophys. Chem. 16, 69–92.

    Article  CAS  Google Scholar 

  • Eisenberg, H., Mevarech, M., and Zaccai, G. (1992) Biochemical, structural, and molecular genetic aspects of halophilism. Adv. Prot. Chem. 43, 1–62.

    CAS  Google Scholar 

  • Elcock, A.H., and McCammon, J.A. (1998) Electrostatic contributions to the stability of halophilic proteins. J. Mol. Biol. 280, 731–748.

    Article  PubMed  CAS  Google Scholar 

  • Francheschi, F., Sagi, I., Böddeker, N., Evers, U., Arndt, E., Paulke, C., Hasenbank, R., Laschever, M., Glotz, C., Piefke, J., Müssig, J., Weinstein, S., and Yonath, A. (1994) Crystallographic, biochemical and genetic studies on halophilic ribosomes. Syst. Appl. Microbiol. 16, 697–705.

    Google Scholar 

  • Frolow, F., Harel, M., Sussman, J.L., Mevarech, M., and Shoham, M. (1996) Insights into protein adaptation to a saturated salt environment from the crystal structure of a halophilic 2Fe-2S ferredoxin. Nature Struct. Biol. 3, 452–458.

    Article  PubMed  CAS  Google Scholar 

  • Ginzburg, M. (1978) Ion metabolism in whole cells of Halobacterium halobium and H. marismortui, in S.R. Caplan and M. Ginzburg (eds.), Energetics and Structure of Halophilic Microorganisms. Elsevier/North Holland Biomedical Press, Amsterdam, pp. 561–577.

    Google Scholar 

  • Ginzburg, M., Sachs, L., and Ginzburg, B.Z. (1970) Ion metabolism in a Halobacterium. I. Influence of age of culture on intracellular concentrations. J. Gen. Physiol. 55, 187–207.

    Article  PubMed  CAS  Google Scholar 

  • Grant, W.D., Gemmell, R.T., and McGenity, T.J. (1998) Halobacteria: the evidence for longevity. Extremophiles 2, 279–287.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, R., Sickinger, H.-D., and Oesterhelt, D. (1980) Anaerobic growth of halobacteria. Proc. Natl. Acad. Sci. USA 77, 3821–3825.

    PubMed  CAS  Google Scholar 

  • Hochstein, L.I. (1988) The physiology and metabolism of the extremely halophilic bacteria, in F. Rodriguez-Valera (ed.), Halophilic Bacteria. Vol. II. CRC Press, Boca Raton, pp. 67–83.

    Google Scholar 

  • Kanner, B.I., and Racker, E. (1975) Light-dependent proton and rubidium translocation in membrane vesicles from Halobacterium halobium. Biochem. Biophys. Res. Commun. 64, 1054–1061.

    Article  PubMed  CAS  Google Scholar 

  • Kushner, D.J. (1985) The Halobacteriaceae, in C.R. Woese and R.S. Wolfe (eds.), The Bacteria. A Treatise on Structure and Function. Vol. VIII. Archaebacteria. Academic Press, Orlando, pp. 171–214.

    Google Scholar 

  • Kushner, D.J. (1988) What is the “true” internal environment of halophilic and other bacteria? Can. J. Microbiol. 34, 482–486.

    Google Scholar 

  • Lanyi, J.K. (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol. Rev. 38, 272–290.

    PubMed  CAS  Google Scholar 

  • Lanyi, J.K. (1986) Halorhodopsin: a light-driven chloride pump. Ann. Rev. Biophys. Biophys. Chem. 15, 11–28.

    Article  CAS  Google Scholar 

  • Lanyi, J.K. (1990) Halorhodopsin, a light-driven electrogenic chloride-transport system. Physiol. Rev. 70, 319–330.

    PubMed  CAS  Google Scholar 

  • Lanyi, J.K., and MacDonald, R.E. (1976) Existence of electrogenic hydrogen/sodium ion antiport in Halobacterium cell envelope vesicles. Biochemistry 15, 4608–4614.

    PubMed  CAS  Google Scholar 

  • Lanyi, J.K., and Silverman, M.P. (1972) The state of binding of intracellular K+ in Halobacterium cutirubrum. Can. J. Microbiol. 18, 993–995.

    PubMed  CAS  Google Scholar 

  • Lanyi, J.K., and Silverman, M.P. (1979) Gating effects in Halobacterium halobium membrane transport. J. Biol. Chem. 254, 4750–4755.

    PubMed  CAS  Google Scholar 

  • Lanyi, J.K., and Stevenson, J. (1970) Studies of the electron transport chain of extremely halophilic bacteria. IV. Role of hydrophobic forces in the structure of menadione reductase. J. Biol. Chem. 245, 4074–4080.

    PubMed  CAS  Google Scholar 

  • Lanyi, J.K., and Vñró, G. (1995) The photocycles of bacteriorhodopsin. Israel J. Chem. 35, 365–385.

    CAS  Google Scholar 

  • Larsen, H. (1967) Biochemical aspects of extreme halophilism. Adv. Microb. Physiol. 1, 97–132.

    CAS  Google Scholar 

  • Larsen, H. (1973) The halobacteria’s confusion to biology. Antonie van Leeuwenhoek 39, 383–396.

    PubMed  CAS  Google Scholar 

  • Luisi, B.F., Lanyi, J.K., and Weber, H.J. (1980) Na+ transport via Na+/H+ antiport in Halobacterium halobium envelope vesicles. FEBS Lett. 117, 354–358.

    Article  PubMed  CAS  Google Scholar 

  • Mancinelli, R.L., and Hochstein, L.I. (1986) Occurrence of denitrification in extremely halophilic bacteria. FEMS Microbiol. Lett. 35, 55–58.

    PubMed  CAS  Google Scholar 

  • Matheson, A.T., Sprott, G.D., McDonald, I.J., and Tessier, H. (1976) Some properties of an unidentified halophile: growth characteristics, internal salt concentration, and morphology. Can. J. Microbiol. 22, 780–786.

    PubMed  CAS  Google Scholar 

  • Meury, J., and Kohiyama, M. (1989) ATP is required for K+ active transport in the archaebacterium Haloferax volcanii. Arch. Microbiol. 151, 530–536.

    Article  CAS  Google Scholar 

  • Mevarech, M., and Neumann, E. (1977) Malate dehydrogenase isolated from extremely halophilic bacteria of the Dead Sea. 2. Effect of salt on the catalytic activity and structure. Biochemistry 16, 3786–3792.

    PubMed  CAS  Google Scholar 

  • Mohr, V., and Larsen, H. (1963) On the structural transformations and lysis of Halobacterium salinarium in hypotonic and isotonic solutions. J. Gen. Microbiol.. 31, 267–280.

    CAS  Google Scholar 

  • Norton, C.F., McGenity, T.J., and Grant, W.D. (1993) Archaeal halophiles (halobacteria) from two British salt mines. J. Gen. Microbiol. 139, 1077–1081.

    CAS  Google Scholar 

  • Oesterhelt, D. (1995) Structure and function of halorhodopsin. Israel J. Chem. 35, 475–494.

    CAS  Google Scholar 

  • Oren, A. (1983) Halobacterium sodomense sp. nov., a Dead Sea halobacterium with an extremely high magnesium requirement. Int. J. Syst. Bacteriol. 33, 381–386.

    Google Scholar 

  • Oren, A. (1986) Intracellular salt concentrations of the anaerobic halophilic eubacteria Haloanaerobium praevalens and Halobacteroides halobius. Can. J. Microbiol. 32, 4–9.

    CAS  Google Scholar 

  • Oren, A. (1994) The ecology of the extremely halophilic archaea. FEMS Microbiol. Rev. 13, 415–440.

    CAS  Google Scholar 

  • Oren, A., Heldal, M., and Norland, S. (1997) X-ray microanalysis of intracellular ions in the anaerobic halophilic eubacterium Haloanaerobium praevalens. Can. J. Microbiol. 43, 588–592.

    CAS  Google Scholar 

  • Pieper, U., Kapadia, G., Mevarech, M., and Herzberg, O. (1998) Structural features of halophilicity derived from the crystal structure of dihydrofolate reductase from the Dead Sea halophilic archaeon, Haloferax volcanii. Structure 6, 75–88.

    Article  PubMed  CAS  Google Scholar 

  • Pundak, S., and Eisenberg, H. (1981) Structure and activity of malate dehydrogenase from the extreme halophilic bacteria of the Dead Sea. 1. Conformation and interaction with water and salt between 5 M and 1 M NaCl concentration. Eur. J. Biochem. 118, 463–470.

    PubMed  CAS  Google Scholar 

  • Pundak, S., Aloni, S., and Eisenberg, H. (1981) Structure and activity of malate dehydrogenase from the extreme halophilic bacteria of the Dead Sea. 2. Inactivation, dissociation and unfolding at NaCl concentrations below 2 M. Salt, salt concentration and temperature dependence of enzyme stability. Eur. J. Biochem. 118, 471–477.

    PubMed  CAS  Google Scholar 

  • Reistad, R. (1970) On the composition and nature of the bulk protein of extremely halophilic bacteria. Arch. Mikrobiol. 71, 353–360.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J., and Katznelson, H. (1953) Aspartate-glutamate transaminase in as red halophilic bacterium. Nature 172,672–673.

    PubMed  CAS  Google Scholar 

  • Schobert, B., and Lanyi, J.K. (1982) Halorhodopsin is a light-driven chloride pump. J. Biol.. Chem. 257, 10306–10313.

    PubMed  CAS  Google Scholar 

  • Tindall, B.J. (1992) The family Halobacteriaceae, in A. Balows, H.G. Trüper, M. Dworkin, W. Harder and K.-H. Schleifer (eds.), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. Vol. I. Springer-Verlag, New York, pp. 768–808.

    Google Scholar 

  • Ventosa, A., and Oren, A. (1996) Halobacterium salinarum nom. corrig., a name to replace Halobacterium salinarium (Elazari-Volcani) and to include Halobacterium halobium and Halobacterium cutirubrum. Int. J. Syst. Bacteriol 46, 347.

    Google Scholar 

  • Ventosa, A., Nieto, J.J., and Oren, A. (1998). The biology of moderately halophilic aerobic Bacteria. Microbiol. Mol. Biol Rev. (in press).

    Google Scholar 

  • Wagner, G., Hartmann, R., and Oesterhelt, D. 1978. Potassium uniport and ATP synthesis in Halobacterium halobium. Eur. J. Biochem. 89: 169–179.

    PubMed  CAS  Google Scholar 

  • Zaccai, G., and Eisenberg, H. (1991) A model for the stabilization of a halophilic protein, in G. di Prisco (ed.), Life under Extreme Conditions. Springer-Verlag, Berlin, pp. 125–137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Oren, A. (2002). Adaptation of Halophilic Archaea to Life at High Salt Concentrations. In: Läuchli, A., Lüttge, U. (eds) Salinity: Environment - Plants - Molecules. Springer, Dordrecht. https://doi.org/10.1007/0-306-48155-3_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-48155-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0492-6

  • Online ISBN: 978-0-306-48155-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics