Skip to main content

Radioactive Microspheres for Medical Applications

  • Chapter
Physics and Chemistry Basis of Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 7))

Summary

This paper reviews the preparation and application of radioactive microspheres for medical purposes. It first discusses the properties of relevant radioisotopes and then explores the diagnostic uses of gamma-emitter labelled microspheres, such as blood flow measurement and imaging of the liver and other organs. The therapeutic uses of alpha- and beta-emitting microspheres, such as radioembolization, local tumour therapy and radiosynovectomy, are then described, and the recent developments in neutron capture therapy using gadolinium microspheres and boron liposomes discussed. The review concludes with some considerations in radiopharmaceutical kit preparations and radioisotope generator use, as well as with some radiobiological and dosimetric concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilder RB, DeNardo GL, and DeNardo SJ. Radioimmunotherapy: Recent results and future directions, J Clin. Oncol. 14: 1383–1400 (1996).

    Google Scholar 

  2. Papatheofanis FJ and Munson L. Peptide radiopharmaceutical imaging. Appl. Radiol. June: 11–17 (1994).

    Google Scholar 

  3. Cleland JL and Jones AJS. Stable formulations of recombinant human growth hormone and interferon-6 for microencapsulation in biodegradable microspheres. Pharmaceuf, Res. 13: 1464–1475 (1996).

    Google Scholar 

  4. Mehta RC, Jeyanthi R, Calis S, Thanoo BC, Burton KW, and DeLuca PP. Biodegradable microspheres as depot system for parenteral delivery of peptide drugs. J. Contr. Rel. 29: 375–384 (1994).

    Article  Google Scholar 

  5. Mathiowitz E, Jacob JS, Jong YS, Carino GP, Chickering DE, Chaturvedi P, Santos CA, Vijayaraghavan K, Montgomery S, Bassett M, and Morrell C. Biologically erodable microspheres as potential oral drug delivery systems. Nature 386: 410–414 (1997).

    Article  ADS  Google Scholar 

  6. Langer R. Drug delivery and targeting. Nature 392: 5–10 (1998).

    Google Scholar 

  7. Chen H and Langer R. Oral particulate delivery: status and future trends. Adv. Drug Del. Rev. 34: 339–350 (1998).

    Google Scholar 

  8. Muir W, Husband AJ, Gipps EM, and Bradley MP. Induction of specific IgA responses in rats after oral vaccination with biodegradable microspheres containing a recombinant protein. Immunol. Lett. 42: 203–207 (1994).

    Article  Google Scholar 

  9. Hanes J, Chiba M, and Langer R. Polymer microspheres for vaccine delivery. Pharm. Biotech. 6: 389–412 (1995).

    Google Scholar 

  10. Smith OP, Hann IM, Cox H, and Novelli V. Visceral leishmaniasis: rapid response to AmBisome treatment. Arch. Dis. Childhood 73: 157–159 (1995).

    Google Scholar 

  11. Codde JP, Lumsden AJ, Napoli S, Burton MA, and Gray BN. A comparative study of the anticancer efficacy of doxorubicin carrying microspheres and liposomes using a rat liver tumour model. Anticancer Research 13: 539–544 (1993).

    Google Scholar 

  12. Treleaven JG. Bone marrow purging: An appraisal of immunological and non-immunological methods. Adv. Drug Del. Rev. 2/3: 253–269 (1988).

    Google Scholar 

  13. Arshady R. Polymer supports, reagents and catalysts. In Arshady R (Ed.). Microspheres, microcapsules and liposomes. Citus Books, London, 1999, pp. 197–235.

    Google Scholar 

  14. Mikhalovsky SV. Microparticles for haemoperfusion and extracorporeal therapy. In Arshady R (Ed.). Microspheres, microcapsules and liposomes. Citus Books, London, 1999, pp. 133–169.

    Google Scholar 

  15. Bangs LB. Microspheres for medical diagnostics: Specific tests and assays. In Arshady R (Ed.). Microspheres, microcapsules and liposomes. Citus Books, London, 1999, pp. 71–96

    Google Scholar 

  16. Flandroy PMJ, Grandfils C, and Jerome RJ. Clinical applications of microspheres in embolization and chemoembolisation: A comprehensive review and perspectives. In Rolland A (Ed.). Pharmaceutical particulate carriers: Therapeutic applications. Marcel Dekker Inc., New York, 1993, pp. 321–366.

    Google Scholar 

  17. Boschetti E and Schwarz A. Polymer microbeads: Biological applications. In Arshady R (Ed.). Microspheres, microcapsules and liposomes. Citus Books, London, 1999, pp. 191–224.

    Google Scholar 

  18. Papisov MI. Modelling in vivo transfer of long-circulating polymers (two classes of long circulating polymers and factors affecting their transfer in vivo). Adv. Drug Del. Rev. 16: 127–139 (1995).

    Google Scholar 

  19. Torchilin VP and Trubetskoy VS. Which polymers can make nanoparticulate drug carriers long-circulating? Adv. Drug Del. Rev. 16: 141–155 (1995).

    Google Scholar 

  20. Ackerman NB. The blood supply of experimental liver metastases. IV. Changes in vascularity with increasing tumour growth. Surgery 75: 589–596 (1974).

    Google Scholar 

  21. Gupta PK. Review article: Drug targeting in cancer chemotherapy: A clinical perspective. J. Pharm. Sci. 79: 949–962 (1990).

    Google Scholar 

  22. Roser M, Fischer D, and Kissel T. Surface-modified biodegradable albumin nano-and microspheres. Part II: Effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur. J. Pharm. Biopharm. 46: 255–263 (1998).

    Google Scholar 

  23. Macklis FW, Kinsey BM, Kassis AI, Ferrara JLM, Atcher RW, Hines JJ, Coleman CN, Adelstein SJ, and Burakoff SJ. Radioimmunotherapy with alpha-particle-emitting immunoconjugates. Science 240: 1024–1026 (1988).

    ADS  Google Scholar 

  24. Humm JL, Macklis RM, Bump K, Cobb LM, and Chin LM. Internal dosimetry using data derived from autoradiographs. J. Nucl. Med. 34: 1811–1817 (1993).

    Google Scholar 

  25. McDevitt MR, Sgouros G, Finn RD, Humm JL, Jurcic JG, Larson SM, and Scheinberg DA. Radioimmunotherapy with alpha-emitting nuclides. Eur. J. Nucl. Med. 25: 1341–1351 (1998).

    Article  Google Scholar 

  26. Muller JH and Rossier PH. A new method for the treatment of cancer of the lungs by means of artificial radioactivity. Acta Radiologica 35: 449–468 (1951).

    Google Scholar 

  27. Rdsler H, Triller J, Baer HU, Geiger L, Beer HF, Becker C, and Blumgart LH. Superselective radioembolization of hepatocellular carcinoma: 5-year results of a prospective study. Nucl. Med. 33: 206–214 (1994).

    Google Scholar 

  28. Hall EJ and Brenner DJ. The dose-rate effect in interstitial brachytherapy: a controversy resolved. Brit. J, Radiology. 65: 242–247 (1992).

    Google Scholar 

  29. Kinsey RR National Nuclear Data Center: Nuclear Data from NuDat at Brookhaven National Laboratory [http://www.nndc.bnl.gov/nndc/nudat/].: (1998).

  30. Johnson LS, Yanch JC, Shortkroff S, Barnes CL, Spitzer AI, and Sledge CB. Beta-particle dosimetry in radiation synovectomy. Eur. J. Nucl. Med. 22: 977–988 (1995).

    Article  Google Scholar 

  31. Loevinger R, Budinger TF, and Watson EE. MIRD primer for absorbed dose calculations. Society of Nuclear Medicine, New York, 1991.

    Google Scholar 

  32. Russell JL, Carden JL, and Herron L. Dosimetry calculations for Yttrium-90 used in the treatment of liver cancer. Endocurietherapy/Hyperthermia Oncology 4: 171–186 (1988).

    Google Scholar 

  33. Stabin MG. MIRDOSE: Personal computer software for internal dose assessment in nuclear medicine. J. Nucl. Med. 37: 538–546 (1996).

    Google Scholar 

  34. Harbert JC, Eckelman WC, and Neumann RD. Nuclear medicine: Diagnosis and therapy. Thieme Medical Publishers, New York, 1996.

    Google Scholar 

  35. Bardies M, Lame J, Myers MJ, and Simoen JP. A simplified approach to beta dosimetry for small spheres labelled on the surface. Phys. Med. Biol. 35: 1039–1050 (1990).

    Google Scholar 

  36. Akabani G, Poston JW, and Bolch WE. Estimates of beta absorbed fractions in small tissue volumes for selected radionuclides. J. Nucl. Med. 32: 835–839 (1991).

    Google Scholar 

  37. Siegel JA and Stabin MG. Absorbed fractions for electrons and beta particles in spheres of various sizes. J. Nucl. Med. 35: 152–156 (1994).

    Google Scholar 

  38. Duncan R, Kopeckova-Rejmanova P, Strohalm J, Hume I, Cable HC, Pohl J, Lloyd JB, and Kopecek J. Anticancer agents coupled to N-(2-hydroxypropyl)methacrylamide copolymers. I. Evaluation of daunomycin and puromycin conjugates in vitro. Br. J. Cancer 55: 165–174 (1987).

    Google Scholar 

  39. Nelp WB. Evaluation of colloids for RES function studies. In Subramanian G, Rhodes B, Cooper JF, and Sodd VJ (Eds.). Society ofNuclear Medicine, New York, NY, 1975, pp. 349–356.

    Google Scholar 

  40. Goodwin DA, Stern HS, and Wagner HN. Ferric hydroxide particles labelled with indium In-ll3m for lung scanning. JAMA 206: 339–343 (1968).

    Article  Google Scholar 

  41. Lin MS and Winchell HS. A “kit” method for the preparation of technetium-tin(I1) colloid and a study of its properties. J. Nucl. Med. 13: 58–65 (1972).

    Google Scholar 

  42. Zolle I. Method for incorporating substances into protein microspheres. US Patent No. 3937668, 1976.

    Google Scholar 

  43. Amersham. Guide to radioiodination techniques: Iodine-125. Amersham International, Little Chalfont, England, 1993.

    Google Scholar 

  44. Yang DJ, Kuang LR, Li C, Kan Z, and Wallace S. Computed tomographic liver enhancement with poly(d,l-lactide)-microencapsulated contrast media. Invest. Radiol. 29 Suppl. 2: S2674270 (1994).

    Google Scholar 

  45. Häfeli U, Tiefenauer LX, Schubiger PA, and Weder HG. A lipophilic complex with 186Re/188Re incorporated in liposomes suitable for radiotherapy. Nucl. Med. Biol. Int. J. Rad. Appl. Instr. Part B 18: 449–454 (1991).

    Google Scholar 

  46. Sledge CB, Noble J, Hnatowich DJ, Kramer RT, and Shortkroff S. Experimental radiation synovectomy by 165Dy ferric hydroxide macroaggregate. Arthritis Rheum. 20: 1334–1342 (1977).

    Google Scholar 

  47. Howson MP, Shepard NL, and Mitchell NS. Colloidal chromic phosphate P-32 synovectomy in antigen-induced arthritis in the rabbit. Clin. Orthopaed. Rel. Res. 229: 283–293 (1988).

    Google Scholar 

  48. Gürkan H, Yalabik-Kas HS, Hincal AA, and Ercan MT. Streptomycin sulphate microspheres. Formulation and in vivo distribution. J. Microencapsulation 3: 101–108 (1986).

    Google Scholar 

  49. Reza MS and Whateley TL. Iodo-2′-deoxyuridine (IUdR) and I-125-IUdR loaded biodegradable microspheres for controlled delivery to the brain, J. Microencapsulation 15: 789–801 (1998).

    Google Scholar 

  50. Senyei AE and Widder KJ. Drug Targeting: Magnetically responsive albumin microspheres — a review of the system to date. Gynecol. Oncol. 12: 1–13 (1981).

    Article  Google Scholar 

  51. Teder H, Johansson CJ, ďArgy R, Lundin N, and Gunnarsson PO. The effect of different dose levels of degradable starch microspheres (Spherex) on the distribution of a cytotoxic drug after regional administration to tumour-bearing rats. Europ. J. Cancer 31A: 1701–1705 (1995).

    Google Scholar 

  52. Burch WM, Sullivan PJ, and McLaren CJ. Technegas — a new ventilation agent for lung scanning. Nuclear Medicine Communications 7: 865–871 (1986).

    Google Scholar 

  53. Schubiger PA, Beer HF, Geiger L, Rösler H, Zimmermann A, Triller J, Mettler D, and Schilt W. ‴Y-resin particles-Animal experiments on pigs with regard to the introduction of superselective embolization therapy. Nucl. Med. Bid. Int. J. Rad. Appl. Instr. Part B 18: 305–311 (1991).

    Google Scholar 

  54. Quinlan MF, Salman SD, Swift DL, Wagner HN, and Proctor DF. Measurement of mucociliary function in man. Am. Rev. Respir. Dis. 99: 13–23 (1969).

    Google Scholar 

  55. Stivland T, Camilleri M, Vassallo M, Proano M, Rath D, Brown M, Thomforde G, Pemberton J, and Phillips S. Scintigraphic measurement of regional gut transit in idiopathic constipation. Gastroenterology 101: 107–115 (1991).

    Google Scholar 

  56. Simon H, Drettner B, and Jung B. Messung des Schleimhauttransportes in der menschlichen Nase mit Cr-51 markierten HarzkUgelchen. Acta Otolalyngol. 83: 378–390 (1977).

    Google Scholar 

  57. Zimmermann A, Schubiger PA, Mettler D, Geiger L, Triller J, and Rösler H. Renal pathology after arterial Y-90 microsphere administration in pigs: A model for superselective radioembolization therapy. Invest. Radiol. 30: 716–723 (1995).

    Google Scholar 

  58. Willmott N, Murray T, Carlton R, Chen Y, Logan H, McCurrach G, Bessent RG, Goldberg JA, Anderson J, McKillop JH, and McArdle CS. Development of radiolabelled albumin microspheres A comparison of gamma-emitting radioisotopes of Iodine (131I) and Indium (111Id/113mIn). Nucl. Med. Bid. Int. J. Rad. Appl. Instr. Part B 18: 687–694 (1991).

    Google Scholar 

  59. Wagner SJ and Welch MJ. Gallium-68 labelling of albumin and albumin microspheres. J. Nucl. Med. 20: 428–433 (1979).

    Google Scholar 

  60. Ercan MT, Tuncel SA, Caner BE, and Piskin E. Tc-99m-labeled monodisperse latex particles with amine or carboxylic functional groups for colon transit studies. J. Microencapsulation 10: 67–76 (1993).

    Google Scholar 

  61. Day DE, Ehrhardt GJ, and Zinn KR. Radiolabelled protein composition and method for radiation synovectomy. U.S.A. Patent No. 5403573, 1995.

    Google Scholar 

  62. Yan C, Li X: Chen X, Wang D, Zhong D, Tan T, and Kitano H. Anticancer gelatine microspheres with multiple functions. Biomaterials 12: 640–644 (1991).

    Google Scholar 

  63. Vergote I, Larsen RH, de Vos L, Nesland JM, Bruland 0, Bjorgum J, Alstad J, Trope C, and Nustad K. Therapeutic efficacy of the á-emitter 211At bound on microspheres compared with 90Y and 32 P colloids in a murine intraperitoneal tumour model. Gynecol. Oncol. 47: 366–372 (1992).

    Google Scholar 

  64. Ehrhardt GJ and Day DE. Therapeutic use of 90Y microspheres. Nucl. Med. Biol. Int. J. Rad. Appl. Instr. Part B 14: 233–242 (1987).

    Google Scholar 

  65. Conzone SD, Häfeli UO, Day DE, and Ehrhardt GJ. Preparation and properties of radioactive rhenium glass microspheres intended for in-vivo radioembolization therapy. J. Biomed. Mat. Res. 42: 617–625 (1998).

    Google Scholar 

  66. Brown RF, Lindesmith LC, and Day DE. 166Holmium-containingglass for internal radiotherapy of tumours. Nucl. Med. Bid. Int. J. Rad. Appl. Instr. Part B 18: 783–790 (1991).

    Google Scholar 

  67. Mumper RJ and Jay M. Poly(L-lactic acid) microspheres containing neutron-activatable Holmium-165: A study of the physical characteristics of microspheres before and after irradiation in a nuclear reactor, Pharmaceut. Res. 9: 149–154 (1992).

    Article  Google Scholar 

  68. Nijsen JFW, Zonnenberg BA, Woittiez JRW, Rook DW, Swildens-van Woudenberg IA, van Rijk PP, and van het Schip AD. Holmium-166 poly lactic acid microspheres applicable for intra-arterial radionuclide therapy of hepatic malignancies: effects of preparation and neutron activation techniques. Eur. J. Nucl. Med. 26: 699–704 (1999).

    Article  Google Scholar 

  69. Häfeli UO, Roberts WK, Pauer GJ, Kraeft SK, and Macklis RM. Preparation and stability of biodegradable radioactive rhenium microspheres (Re-1 86 and Re-1 88) for use in radiotherapy. J. Pharm. Sci. submitted: (1999).

    Google Scholar 

  70. Ercan MT. Rapid determination of hydrolysed-reduced Technetium-99m in particulate radiopharmaceuticals. Appl. Radiat. Isot.-Int. J. Radiat. Appl. Instrum. Part A 43: 1175–1177 (1992).

    Google Scholar 

  71. Chinol M, Vallabhajosula S, Goldsmith SJ, Klein MJ, Deutsch KF, Chinen LK, Brodack JW, Deutsch EA, Watson BA, and Tofe AJ. Chemistry and biological behaviour of Samarium-153 and Rhenium-186-labeled hydroxyapatite particles: Potential radiopharmaceuticals for radiation synovectomy. J Nucl. Med. 34: 1536–1542 (1993).

    Google Scholar 

  72. Junghans RF’, Dobbs D, Brechbiel MW, Mirzadeh S, Raubitschek AA, Gansow OA, and Waldmann TA. Pharmacokinetics and bioactivity of 1,4,7,10-tetra-azacyclododecane N,N′,N″,N‴-tetraacetic acid (DOTA)-bismuth-conjugated anti-Tac antibody for a-emitter 212Bi therapy. Cancer Res. 53: 5683–5689 (1993).

    Google Scholar 

  73. Camera L, Kinuya S, Garmestani K, Wu C, Brechbiel MW, Pai LH, McMurry TJ, Gansow OA, Pastan I, Paik CH, and Carrasquillo JA. Evaluation of the serum stability and in vivo biodistribution of CHX-DTPA and other ligands for Yttrium labelling of monoclonal antibodies. J. Nucl. Med. 35: 882–889 (1994).

    Google Scholar 

  74. Fritzberg AR. Radioimmunotherapy with Rhenium-186 and Rhenium-188. In Bryskin BD (Ed.). Rhenium and Rhenium Alloys. TMS (Minerals, Metals and Materials Society), Warrendale, PA, 1997, pp. 479–487.

    Google Scholar 

  75. Fritzberg AR, Abrams PG, Beaumier PL, Kasina S, Morgan AC, Rao TN, Reno JM, Sanderson JA, Srinivasan A, Wilbur DS, and Vanderheyden JL. Specific and stable labelling of antibodies with Tc-99m with a dialled dithiolate chelating agent. Proc. Natl. Acad. Sci. USA 85: 4025–4029 (1988).

    ADS  Google Scholar 

  76. Eckelman WC, Steigman J, and Paik CH. Radiopharmaceutical chemistry. In Harbert JC, Eckelman WC, and Neumann RD (Eds.). Nuclear medicine: Diagnosis and therapy. Thieme Medical Publishers, New York, 1996, pp. 213–266.

    Google Scholar 

  77. Griffiths GL, Goldenberg DM, Diril H, and Hansen HJ. Technetium-99m, Rhenium-186, and Rhenium-188 direct labelled antibodies. Cancer 73: 761–768 (1994).

    Google Scholar 

  78. Wunderlich G, Pinkert J, and Franke WG. Studies on the processing and in vivo stability of Re-188 labelled microspheres. In Nicolini M and Mazzi U (Eds.). Technetium, rhenium and other metals in chemistry and nuclear medicine. SGE Ditoriali, Padova, Italy, 1999, pp. 709–712.

    Google Scholar 

  79. Häfeli UO, Sweeney SM, Beresford BS, Sim EH, and Macklis RM Biodegradable magnetically directed 90Y-microspheres: Novel agents for targeted intracavitary radiotherapy. J. Biomed. Mat. Res. 28: 901–908 (1994).

    Google Scholar 

  80. Day DE and Day TE. Radiotherapy Glasses. In Hench LL and Wilson J (Eds.). An Introduction to Bioceramics. World Scientific, New Jersey, 1993, pp. 305–317.

    Google Scholar 

  81. Conzone SD. Glass microspheres for medical applications. Ph.D. thesis, University of Missouri, Rolla; 1999.

    Google Scholar 

  82. Locher GL. Biological effects and therapeutic possibilities of neutrons. AJR 36: 1–13 (1936).

    Google Scholar 

  83. Mehta SC and Lu DR. Targeted drug delivery for boron neutron capture therapy. Pharmaceut. Res. 13: 344–351 (1996).

    Article  Google Scholar 

  84. Akine Y, Tokita N, Tokuuye K, Satoh M, Fukumori Y, Tokumitsu H, Kanamori R, Kobayashi T, and Kanda K. Neutron capture therapy of murine ascites tumour with gadolinium-containing microcapsules. J. Cancer Res. Clin. Oncol. 119: 71–73 (1992).

    Article  Google Scholar 

  85. Tokumitsu H, Ichikawa H, Fukumori Y, and Block LH. Preparation of gadoptentetic acid-loaded chitosan microparticles for gadolinium neutron capture therapy of cancer by a novel emulsion-droplet coalescence technique. Chem. Pharm. Bull. 47: 838–842 (1999).

    Google Scholar 

  86. Yanagie H, Tomita T, Kobayashi H, Fujii Y, Nonaka Y, Saegusa Y, Hasumi K, Eriguchi M, Kobayashi T, and Ono K. Inhibition of human pancreatic cancer growth in nude mice by boron neutron capture therapy. Br. J. Cancer 75: 660–665 (1997).

    Google Scholar 

  87. Rawls RL. Bringing boron to bear on cancer. C&EN March 22: 26–29 (1999).

    Google Scholar 

  88. Hawthorne MF and Shelly K. Liposomes as drug delivery vehicles for boron agents. J. Neuro-Oncol. 33: 53–58 (1997).

    Article  Google Scholar 

  89. Heymann MA, Payne BD, Hoffman JI, and Rudolph AM. Blood flow measurements with radionuclide-labelled particles. Progress in Cardiovascular Diseases 20: 55–79 (1977).

    Google Scholar 

  90. Peters AM, Danpure HJ, Osman S, Hawker RJ, Henderson BL, Hodgson HJ, Kelly JD, Neirinckx RD, and Lavender JP. Clinical experience with Tc-99m-hexamethyl propylene amine oxime for labelling leukocytes and imaging inflammation. The Lancet 2: 946–949 (1986).

    Google Scholar 

  91. Knight L. Thrombus-localising radiopharmaceuticals. In Fritzberg AR (Ed.). Radiopharmaceuticals: Progress and clinical perspectives. CRC Press, Boca Raton, Florida, 1986, pp. 23–40.

    Google Scholar 

  92. Marcus ML, Heistad DD, Ehrhardt JC, and Abboud FM. Total and regional cerebral blood flow measurement with 7-10-, 15-, 25-, and 50-im microspheres. J. Appl. Physiol. 40(4): 501–507 (1976).

    Google Scholar 

  93. Triller J, Rösler H, Geiger L, and Baer HU. Methodik der superselektiven Radioembolisation von Lebertumoren mit Yttrium-90-Resin-Paikeln. Fortschr. Rontgenstr. 160: 425–431 (1994).

    Google Scholar 

  94. Lin M. Radiation pneumonitis caused by Yttrium-90 microspheres: Radiologic findings. AJR 162: 1300–1302 (1994).

    Google Scholar 

  95. Papisov MI and Brady TJ. System of drug delivery to the lymphatic tissues. U.S.A. Patent No. 5582172,1996.

    Google Scholar 

  96. Frier M and Perkins AC. Radiopharmaceuticals and the gastrointestinal tract. Eur. J. Nucl. Med, 21: 1234–1242 (1994).

    Article  Google Scholar 

  97. Caner BE, Ercan MT, Kapucu LO, Tuncel SA, Bekdik CF, Erbengi G, and Piskin E. Functional assessment of human gastrointestinal tract using Tc-99m-latex particles. Nuclear Medicine Communications 12: 539–544 (1991).

    Google Scholar 

  98. Proffitt RT, Williams LE, Presant CA, Tin GW, Uliana JA, Gzmble RC, and Baldeschwieler JD. Tumour-imaging potential of liposomes loaded with 1 1 1ln-NTA: Biodistribution in mice. J. Nucl. Med. 24: 45–51 (1983).

    Google Scholar 

  99. Ogihara-Umeda I, Sasaki T, and Nishigori H. Development of a liposome-encapsulated radionuclide with preferential tumour accumulation — the choice of radionuclide and chelating ligand. Nucl. Med. Biol. Int. J. Rad. Appl. Instr. Part B 19: 753–757 (1992).

    Google Scholar 

  100. Diaz RV, Mallol J, Delgado A, Soriano 1, and Evora C. Tc-99m microspheres based on biodegradable synthetic polymers (MSP). A new patented radiopharmaceutica!. Poster: (1997).

    Google Scholar 

  101. Wilensky RL, March KL, Gradus-Pizlo I, Schauwecker D, Michaels MB, Robinson J, Carlson K, and Hathaway DR. Regional and arterial localisation of radioactive microparticles after local delivery by unsupported or supported porous balloon catheters. Am. Heart J. 129: 852–859 (1995).

    Article  Google Scholar 

  102. Molho P, Verrier P, Stieltjes N, Schacher JM, Ounnoughene N, Vassilieff D, Menkes CJ, and Sultan Y. A retrospective study on chemical and radioactive synovectomy in severe haemophilia patients with recurrent haemarthrosis. Haemophilia 5: 115–123 (1999).

    Article  Google Scholar 

  103. Keys HM, Bundy BN, Stehman FB, Muderspach LI, Chafe WE, Suggs CL, Walker JL, and Gersell D. Cisplatin, radiation, and adjuvant hysterectomy compared with radiation and adjuvant hysterectomy for bulky stage IB cervical carcinoma. The New England Journal of Medicine 340: 1154–1161 (1999).

    Article  Google Scholar 

  104. Rose PG, Bundy BN, Watkins EB, Thigpen JT, Deppe G, Maiman MA, Clarke-Pearson DL, and Insalaco S. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. The New England Journal of Medicine 340: 1144–1153 (1999).

    Article  Google Scholar 

  105. Wunderlich G, Franke WG, Doberenz I, and Fischer S. Two ways to establish potential At-211 radiopharmaceuticals. Anticancer Research 17: 1809–1814 (1997).

    Google Scholar 

  106. Rotmensch J, Atcher RW, Schlenker R, Hines J, Grdina D, Block BS, Press MF, Herbst AL, and Weichselbaum RR. The effect of the á-emitting radionuclide Lead-212 on human ovarian carcinoma: a potential new form of therapy. Gynecol. Oncol. 32: 236–239 (1989).

    Google Scholar 

  107. Häfeli U, Atcher RW, Morris CE, Beresford B, Humm JL, and Macklis RM. Polymeric radiopharmaceutical delivery systems. Radioactivity & Radiochemistry 3: 11–14 (1992).

    Google Scholar 

  108. Macklis RM, Atcher R, Morris C, Beresford B, Häfeli U, and Humm J. Controlled release biodegradable radiopolymers for intracavitary radiotherapy using a Pb-212 alpha emitting generator system.: (1992).

    Google Scholar 

  109. Harbert JC. Therapy with intra-arterial radioactive particles. In Harbert JC, Eckelman WC, and Neumann RD (Eds.). Nuclear medicine: Diagnosis and therapy. Thieme Medical Publishers, New York, 1996, pp. 1141–1155.

    Google Scholar 

  110. Ariel IM. The treatment of metastases to the liver with interstitial radioactive isotopes. Surgery, Gynecology & Obstetrics 110: 739–745 (1960).

    Google Scholar 

  111. Ariel IM. Treatment of inoperable primary pancreatic and liver cancer by the intra-arterial administration of radioactive isotopes (Y-90 radiating microspheres). Ann. Surg. 162: 267–278 (1965).

    Google Scholar 

  112. Ariel IM. Radioactive isotopes for adjuvant cancer therapy. Arch. Surg. 89: 244–249 (1964).

    Google Scholar 

  113. Burton MA, Gray BN, Kelleher DK, Klemp P, and Hardy N. Selective internal radiation therapy: Validation of intra-operative dosimetry. Radiology 175: 253–255 (1990).

    Google Scholar 

  114. Turner JH, Claringbold PG, Klemp PFB, Cameron PJ, Martindale AA, Glancy RJ, Norman PE, Hetherington EL, Najdovski L, and Lambrecht RM. Ho-166-microsphere liver radiotherapy: a preclinical SPECT dosimetry study in the pig. Nuclear Medicine Communications 15: 545–553 (1994).

    Google Scholar 

  115. Häfeli UO, Casillas S, Dietz DW, Pauer GJ, Rybicki LA, Conzone SD, and Day DE. Radioembolization of Novikoff hepatomas using radioactive rhenium (Re-1 86/Re-1 88) glass microspheres. Int. J. Radiat. Oncol. Biol. Phys. 44: 189–199 (1999).

    Article  Google Scholar 

  116. Andrews JC, Walker SC, Ackermann RJ, Cotton LA, Ensminger WD, and Shapiro B. Hepatic radioembolization with Yttrium-90 containing glass microspheres: Preliminary results and clinical follow up. J. Nucl. Med. 35: 1637–1644 (1994).

    Google Scholar 

  117. Ackerman NB, Lien WM, Kondi ES, and Silverman NA. The blood supply of experimental liver metastases. I. The distribution of hepatic artery and portal vein blood to “small” and “large” turnours. Surgery 66: 1067–1072 (1969).

    Google Scholar 

  118. Leung TWT, Lau WY, Ho SKW, Ward SC, Chow JHS, Chan MSY, Metreweli C, Johnson PJ, and Li AKC. Radiation pneumonitis after selective internal radiation treatment with intraarterial Y-90-microspheres for inoperable hepatic tumours. Int. J. Radiat. Uncol. Biol. Phys. 33: 919–924 (1995).

    Google Scholar 

  119. Ho S, Lau WY, Leung TWT, Chan M, Chan KW, Lee WY, Johnson PJ, and Li AKC. Tumour-to-normal uptake ratio of Y-90 microspheres in hepatic cancer assessed with Tc-99m macroaggregated albumin. Brit. J. Radiology. 70: 823–828 (1997).

    Google Scholar 

  120. Blanchard RJ, Grotenhuis I, LaFave JW, Frye CW, and Perry JN. Treatment of experimental tumours. Arch. Surg. 89: 406–410 (1964).

    Google Scholar 

  121. Shepherd FA, Rotstein LE, Houle S, Yip TCK, Paul K, and Sniderman KW. A phase 1 dose escalation trial of Yttrium-90 microspheres in the treatment of primary hepatocellular carcinoma. Cancer 70: 2250–2254 (1992).

    Google Scholar 

  122. Fellinger K and Schmid J. Die lokale Behandlung der rheumatischen Erkrankungen. Wien Z. Inn. Med. 33: 351 (1952).

    Google Scholar 

  123. Delbarre F, Cayla J, Roucayrol JC, et al. Synoviortheses (synoviotherapie par les radioisotopes). Etude de plus de 400 traitements et perspectives ďavenir. Ann. Med. Interne 121: 441 (1970).

    Google Scholar 

  124. Delbarre F, Roucayrol JC, Ingrand J, Sanchez A, Menkes CJ, and Aignan M. Une nouvelle preparation radioactive pour la synoviorthese: le rhenium 186 colloidal: Avantages par rapport au colloide ďor 198. Nouvellepresse medicale 2: 1372 (1973).

    Google Scholar 

  125. Gumpel JM, Beer TC, Crawley JCW, and Farran HEA. Yttrium 90 in persistent synovitis of the knee — a single centre comparison, The retention and extra-articular spread of four 90Y radiocolloids. Brit. J. Radiology. 48: 377–381 (1975).

    Google Scholar 

  126. Winston MA, Bluestone R, Cracchiolo A, and Blahd WH. Radioisotope synovectomy with P-32-chromic phosphate —kinetic studies. J. Nucl. Med. 14: 886–889 (1973).

    Google Scholar 

  127. Noble J, Jones AG, Davies MA, Sledge CB, Kramer RI, and Livni E. Leakage of radioactive particle systems from a synovial joint studied with a gamma camera. J. Bone Joint Surg. 65A: 381–389 (1983).

    Google Scholar 

  128. Zalutsky MR, Noska MA, Gallagher PW, Shortkroff S, and Sledge CB. Use of liposomes as carriers for radiation synovectomy. Nucl. Med. Biol. Int. J. Rad. Appl. Instr. Part B 15: 151–156 (1988).

    Google Scholar 

  129. Knight CG, Bard DR, and Page Thomas DP. Liposomes as carriers of antiarthritic agents. Ann. N. Y. Acad. Sci.: 415–428 (1988).

    Google Scholar 

  130. Day DE and Ehrhardt GJ. Composition and method for radiation synovectomy of arthritic joints. U.S.A. Patent No. 4889707, 1989.

    Google Scholar 

  131. Mumper RJ, Mills BJ, Yun Kyo U, and Jay M. Polymeric microspheres for radionuclide synovectomy containing neutron-activated Holmium-166. J. Nucl. Med. 33: 398–402 (1992).

    Google Scholar 

  132. Häfeli U, German R, Pauer G, Casillas S, and Dietz D. Production of Rhenium-Powder with ajet mill and its incorporation in radioactive microspheres for the treatment of liver tumours. In Bryskin BD (Ed.). Rhenium and Rhenium Alloys. TMS (Minerals, Metals and Materials Society), Warrendale, PA, 1997,pp. 469–477.

    Google Scholar 

  133. Harbert JC. Radionuclide therapy in joint diseases. In Harbert JC, Eckelman WC, and Neumann RD (Eds.). Nuclear medicine: Diagnosis and therapy. Thieme Medical Publishers, New York, 1996, pp. 1093–1109.

    Google Scholar 

  134. Wang SJ, Lin WY, Chen MN, Chi CS, Chen JT, Bo WL, Hsieh BT, Shen LH, Tsai ZT, Ting G, Mirzadeh S, and Knapp FF. Intratumoural injection of rhenium-188 microspheres into an animal model ofhepatoma. J. Nucl. Med. 39: 1752–1757 (1998).

    Google Scholar 

  135. Order SE, Siegel JA, Lustig RA, Principato R, Zeiger LS, Johnson E, Zhang H, Lang P, Pilchik NB, Metz J, DeNittis A, Boerner P, Beuerlein G, and Wallner PE. A new method for delivering radioactive cytotoxic agents in solid cancers. Int. J. Radiat. Oncol. Biol. Phys. 30: 715–720 (1994).

    Google Scholar 

  136. Westlin JE, Andersson-Forsman C, Garske U, Linne T, Aas M, Glimelius B, Lindgren PG, Order SE, and Nilsson S. Objective responses after fractionated infusional brachytherapy of unresectable pancreatic adenocarcinomas. Cancer 80: 2743–2748 (1997).

    Article  Google Scholar 

  137. Harbert JC. Radiocolloid therapy of cystic brain tumours. In Harbert JC, Eckelman WC, and Neumann RD (Eds.). Nuclear medicine: Diagnosis and therapy. Thieme Medical Publishers, New York, 1996, pp. 1083–1091.

    Google Scholar 

  138. Backlund EO. Colloidal radioisotopes as part of a multi-modality treatment of craniopharyngiomas. J, Neurosurg. Sci. 33: 95–97 (1989).

    Google Scholar 

  139. Häfeli UO and Pauer GJ. Brachytherapy of brain tumours using rhenium microspheres in fibrin glue. J. Natl. Cancer Inst. in preparation (1999).

    Google Scholar 

  140. Wallner KE, Galicich JH, Krol G, Arbit E, and Malkin MG. Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int. J. Radiat. Oncol. Bid. Phys. 16: 1405–1409 (1989).

    Google Scholar 

  141. Häfeli UO, Pauer GJ, Roberts WK, Humm JL, and Macklis RM. Magnetically targeted microspheres for intracavitary and intraspinal Y-90 radiotherapy. In Häfeli U, SchUtt W, Teller J, and Zborowski M (Eds.). Scientific and clinical applications of magnetic carriers. Plenum, New York, 1997, pp. 501–516.

    Google Scholar 

  142. Saha GB. Fundamentals of nuclear pharmacy. Springer, New York, 1998.

    Google Scholar 

  143. Knapp FF, Beets AL, Guhlke S, Zamora PO, Bender H, Palmedo H, and Biersack HJ. Availability of Re-188 from the alumina-based W-l88/Re-188 generator for preparation of Re-188-labeled radiopharmaceuticals for cancer treatment. Anticancer Research 17: 1783–1795 (1997).

    Google Scholar 

  144. Waksman R. Clinical trials in radiation therapy for restenosis: Past, present and future. Vascular radiotherapy monitor 1: 10–18 (1998).

    Google Scholar 

  145. Bender H, Zamora PO, Rhodes BA, Guhlke S, and Biersack HJ. Clinical aspects of local and regional tumour therapy with Re-188-RC-160. Anticancer Research 17: 1705–1712 (1997).

    Google Scholar 

  146. Blower PJ, Lam ASK, ODoherty MJ, Kettle AG, Coakley AJ, and Knapp FF. Pentavalent rhenium-188 dimercaptosuccinic acid for targeted radiotherapy: synthesis and preliminary animal and human studies. Eur. J. Nucl. Med. 25: 613–621 (1998).

    Google Scholar 

  147. Wang SJ, Lin WY, Chen MN, Hsieh BT, Shen LH, Tsai ZT, Ting G, and Knapp FF. radiolabelling of lipiodol with generator-produced Re-188 for hepatic tumour therapy. Appl. Radiat. Isot. 47: 267–271 (1996).

    Article  Google Scholar 

  148. Chen JQ, Strand SE, Tennvall J, Lindgren L, Hindorf C, and Sjögren HO. Extracorporeal immunoadsorption compared to avidin chase: Enhancement of tumour-to-normal tissue ratio for biotinylated rhenium-188 chimeric BR96. J. Nucl. Med. 38: 1934–1939 (1997).

    Google Scholar 

  149. Schubiger PA, Alberto R, and Smith A. Vehicles, chelators, and radionuclides: Choosing the “building blocks” of an effective therapeutic radioimmunoconjugate. Bioconj. Chem. 7: 165–179 (1996).

    Google Scholar 

  150. LüCk M, Pistel KF, Li YX, Blunk T, M”ller RH, and Kissel T. Plasma protein adsorption on biodegradable microspheres consisting of PLGA, PLA or ABA triblock copolymers containing poly(oxyethylene). Influence of production method and polymer composition. J. Contr. Rel. 55: 107–120 (1998).

    Article  Google Scholar 

  151. O’Donoghue JA, Bardies M, and Wheldon TE. Relationships between tumour size and curability for uniformly targeted therapy with beta-emitting radionuclides. J. Nucl. Med. 36: 1902–1909 (1995).

    Google Scholar 

  152. Hall EJ and Brenner DJ. The dose-rate effect revisited: Radiobiological considerations of importance in radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 21: 1403–1414 (1991).

    Google Scholar 

  153. Ogawara KI, Yoshida M, Higaki K, Kimura T, Shiraishi K, Nishikawa M, Takakura Y, and Hashida M. Hepatic uptake of polystyrene microspheres in rat?: Effect of particle size on intrahepatic distribution. J. Contr. Rel 59: 15–22 (1999).

    Article  Google Scholar 

  154. Papisov MI, Savelyev VY, Sergienko VB, and Torchilin VP. Magnetic drug targeting. In vivo kinetics of radiolabelled magnetic drug carriers. Int. J. Pharm. 40: 201–206 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

HÄfeli, U. (2001). Radioactive Microspheres for Medical Applications. In: De Cuyper, M., Bulte, J.W.M. (eds) Physics and Chemistry Basis of Biotechnology. Focus on Biotechnology, vol 7. Springer, Dordrecht. https://doi.org/10.1007/0-306-46891-3_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-46891-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7091-8

  • Online ISBN: 978-0-306-46891-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics