Skip to main content

Triplet Emitters for OLED Applications. Mechanisms of Exciton Trapping and Control of Emission Properties

  • Chapter
Transition Metal and Rare Earth Compounds

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 241))

Abstract

Triplet emitter materials present attractive possibilities for optimizations of organic/organometallic light emitting diodes (OLEDs). This is due to the significantly higher efficiencies obtainable with these compounds as compared to organic emitters. In this contribution, first a schematic introduction is given, how an OLED device is built-up and why multi-layer structures are preferred. Then a basic model is presented, how electron-hole recombination, i.e. the exciton formation process, can be visualized and how the singlet and triplet states of the (doped) emitter compounds are populated. This takes place by specific singlet and triplet paths. The occurrence of such paths is explained by taking into account that the dynamical process of exciton trapping involves dopant-to-matrix charge transfer states (1,3 DMCT states). It is also explained, why the excitation energy is harvested in the lowest triplet state of organo-transition-metal complexes. Due to spin statistics, one can in principle obtain an efficiency of a factor of four higher than using organic singlet emitter molecules. Simple comparisons suggest that electron-hole recombination should preferentially occur on the triplet emitter itself, rather than on matrix molecules with subsequent energy transfer to the emitter. Further, it is pointed out that essential photophysical properties of organometallic triplet emitters depend systematically on the metal participation in the triplet state and on the effective spin-orbit coupling. These factors control the amount of zero-field splitting (ZFS) of the triplet state into substates. Increase of ZFS corresponds to higher metal character in the triplet state. Higher metal character reduces the energy difference between excited singlet and triplet states, enhances the singlet-triplet intersystem crossing rate, lowers the emission decay time, changes the vibrational satellite structure, decreases the excited state reorganization energy, etc. These effects are discussed by referring to well characterized compounds. Based on a new ordering scheme presented for triplet emitter materials, a controlled development of compounds with pre-defined photophysical properties becomes possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hagfeldt A, Grätzel M (2000) Acc Chem Res 33:269

    Google Scholar 

  2. Kuciauskas D, Freund MS, Gray HB, Winkler JR, Lewis NS (2001) J Phys Chem B 105:392

    Google Scholar 

  3. Tai WP, Inoue K, Oh JH (2002) Sol Energy Mater 71:553

    Google Scholar 

  4. Demas JN, DeGraff BA (2001) Coord Chem Rev 211:317

    Google Scholar 

  5. Liebsch G, Klimant I, Frank B, Holst G, Wolfbeis OS (2000) Appl Spectrosc 54:548

    Google Scholar 

  6. Buss CE, Mann KR (2002) J Am Chem Soc 124:1031

    Google Scholar 

  7. Guo X-Q, Castellano FN, Li L, Szmacinski H, Lakowicz JR, Sipior J (1997) Anal Chem 63:337

    Google Scholar 

  8. Cary DR, Zaitseva NP, Gray K, O’Day KE, Darrow CB, Lane SM, Peyser TA, Satcher JH Jr, VanAntwerp WP, Nelson AJ, Reynolds JG (2002) Inorg Chem 41:1662

    Google Scholar 

  9. Drew SM, Janzen DE, Buss CE, MacEwan DI, Dublin KM, Mann KR (2001) J Am Chem Soc 123:8414

    Google Scholar 

  10. Wei L, Chan MCW, Cheung K-K, Che C-M (2001) Organometallics 20:2477

    Google Scholar 

  11. Lamansky S, Djurovich PI, Murphy D, Abdel-Razzaq F, Kwong R, Tsyba I, Bortz M, Mui B, Bau R, Thompson ME (2001) Inorg Chem 40:1704

    Google Scholar 

  12. Brooks J, Babayan Y, Lamansky S, Djurovich PI, Tsyba I, Bau R, Thompson ME (2002) Inorg Chem 41:3055

    Google Scholar 

  13. Grushin VV, Herron N, LeCloux DD, Marshall WJ, Petrov VA, Wang Y (2001) Chem Commun 1494

    Google Scholar 

  14. Lo S-C, Male NAH, Markham JPJ, Magennis SW, Burn PL, Salata OV, Samuel IDW (2002) Adv Mater 14:975

    Google Scholar 

  15. Tsuzuki T, Shirasawa N, Suzuki T, Tokito S (2003) Adv Mater 15:1455

    Google Scholar 

  16. Nazeeruddin MK, Humphry-Baker R, Berner D, Rivier S, Zuppiroli L, Graetzel M (2003) J Am Chem Soc 125:8790

    Google Scholar 

  17. Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, von Zelewsky A (1988) Coord Chem Rev 84:85

    Google Scholar 

  18. Caspar JV, Meyer TJ (1983) Inorg Chem 22:2444

    Google Scholar 

  19. Kober EM, Marshall JL, Dressick WJ, Sullivan BP, Caspar JV, Meyer TJ (1985) Inorg Chem 24:2755

    Google Scholar 

  20. Kober EM, Caspar JV, Lumpkin RS, Meyer TJ (1986) J Phys Chem 90:3722

    Google Scholar 

  21. Kinnunen T-JJ, Haukka M, Nousiainen M, Patrikka A, Pakkanen TA (2001) J Chem Soc Dalton Trans 2649

    Google Scholar 

  22. Kalyanasundaram K (1992) Photochemistry of polypyridine and porphyrin complexes. Academic Press, London

    Google Scholar 

  23. Caspar JV, Meyer TJ (1983) J Phys Chem 87:952

    Google Scholar 

  24. Striplin DR, Crosby GA (1994) Chem Phys Lett 221:426

    Google Scholar 

  25. Finkenzeller W, Stößel P, Kulikova M, Yersin H (2004) Proc SPIE 5214:356

    Google Scholar 

  26. Roundhill DM (1994) Photochemistry and photophysics of metal complexes. Plenum Press, New York

    Google Scholar 

  27. Vogler A, Kunkely H (2001) Top Curr Chem 213:143

    Google Scholar 

  28. Lai S-W, Che C-M (2004) Top Curr Chem 241:

    Google Scholar 

  29. Maestri M, Balzani V, Deuschel-Cornioley C, von Zelewsky A (1992) Adv Photochem 17:1

    Google Scholar 

  30. Caspar JV, Sullivan BP, Kober EM, Meyer TJ (1982) Chem Phys Lett 91:91

    Google Scholar 

  31. Timpson CJ, Bignozzi CA, Sullivan BP, Kober EM, Meyer TJ (1996) J Phys Chem 100:2915

    Google Scholar 

  32. Chen P, Meyer TJ (1998) Chem Rev 98:1439

    Google Scholar 

  33. Sullivan BP (1989) J Phys Chem 93:24

    Google Scholar 

  34. Wiedenhofer H, Schützenmeier S, von Zelewsky A, Yersin H (1995) J Phys Chem 99:13385

    Google Scholar 

  35. Auzel F (1980) In: DiBartolo B (ed) Radiationless processes. Plenum Press, New York

    Google Scholar 

  36. Mataga N, Kubota T (1970) Molecular interactions and electronic spectra. Marcel Dekker, New York

    Google Scholar 

  37. DiBartolo B (ed) (1980) Radiationless processes. Plenum Press, New York

    Google Scholar 

  38. Turro NJ (1978) Modern molecular photochemistry. Benjamin/Cummings Publ, Menlo Park, California, USA

    Google Scholar 

  39. Flint CD (ed) (1989) Vibronic processes in inorganic chemistry. Kluwer Academic Publishers, Dordrecht, Series C, Mathematical and Physical Sciences, vol 288

    Google Scholar 

  40. Fukase A, Dao KLT, Kido J (2002) Polym Adv Technol 13:601

    Google Scholar 

  41. Zhou X, Qin DS, Pfeiffer M, Blochwitz-Nimoth J, Werner A, Drechsel J, Maenning B, Leo K, Bold M, Erk P, Hartmann H (2002) Appl Phys Lett 81:4070

    Google Scholar 

  42. Adachi C, Baldo MA, Forrest SR, Lamansky S, Thompson ME, Kwong RC (2001) Appl Phys Lett 78:1622

    Google Scholar 

  43. Kawamura Y, Yanagida S, Forrest SR (2002) J Appl Phys 92:87

    Google Scholar 

  44. Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR (1999) Appl Phys Lett 75:4

    Google Scholar 

  45. Fuhrmann T, Salbeck J (2002) Adv Photochem 27:83

    Google Scholar 

  46. Lee C-L, Lee KB, Kim J-J (2000) Appl Phys Lett 77:2280

    Google Scholar 

  47. Nguyen TP, LeRendu P, Dinh NN, Fourmigue M, Mézière C (2003) Synth Met 138:229

    Google Scholar 

  48. Wang X, Rundl P, Bale M, Mosley A (2003) Synth Met 137:1051

    Google Scholar 

  49. Riel H, Karg S, Beierlein T, Ruhstaller B, Rieß W (2003) Appl Phys Lett 82:466

    Google Scholar 

  50. Lee Y-J, Kim S-H, Huh J, Kim G-H, Lee Y-H, Cho S-H, Kim Y-C, Do YR (2003) Appl Phys Lett 82:3779

    Google Scholar 

  51. Pfeiffer M, Forrest SR, Leo K, Thompson ME (2002) Adv Mater 14:1633

    Google Scholar 

  52. Murata H, Kafafi ZH, Uchida M (2002) Appl Phys Lett 80:189

    Google Scholar 

  53. Liu MS, Luo J, Jen AK-Y (2003) Chem Mater 15:3496

    Google Scholar 

  54. Chen HY, Lam WY, Luo JD, Ho YL, Tang BZ, Zhu DB, Wong M, Kwok HS (2002) Appl Phys Lett 81:574

    Google Scholar 

  55. Watkins NJ, Mäkinen AJ, Gao Y, Ushida M, Kafafi ZH (2004) Proc SPIE 5214:368

    Google Scholar 

  56. Tung Y-J, Lu MM-H, Weaver MS, Hack M, Brown JJ (2004) Proc SPIE 5214:114

    Google Scholar 

  57. Chwang AB et al. (2003) Appl Phys Lett 83:413

    Google Scholar 

  58. Huang W, Wang X, Sheng M, Xu L, Stubhan F, Luo L, Feng T, Wang X, Zhang F, Zou S (2003) Mater Sci Eng B 98:248

    Google Scholar 

  59. Müller CD, Falcon A, Reckefuss N, Rojahn M, Wiederhirn V, Rudati P, Frohne H, Nuyken O, Becker H, Meerholz K (2003) Nature 421:829

    Google Scholar 

  60. Kim C, Forrest SR (2003) Adv Mater 15:541

    Google Scholar 

  61. Auch MDJ, Soo OK, Ewald G, Soo-Jin C (2002) Thin Solid Film 417:47

    Google Scholar 

  62. Gong X, Robinson MR, Ostrowski JC, Moses D, Bazan GC, Heeger AJ (2002) Adv Mater 14:581

    Google Scholar 

  63. O’Brien DF, Giebeler C, Fletcher RB, Cadby AJ, Palilis LC, Lidzey DG, Lane PA, Bradley DDC, Blau W (2001) Synth Met 116:379

    Google Scholar 

  64. Tutiš E, Berner D, Zuppiroli L (2003) J Appl Phys 93:4596

    Google Scholar 

  65. Lamansky S, Kwong RC, Nugent M, Djurovich PI, Thompson ME (2001) Org Electron 2:53

    Google Scholar 

  66. Hellwege K-H (1976) Einführung in die Festkörperphysik. Springer, Berlin Heidelberg New York, p 509

    Google Scholar 

  67. Garten F, Hilberer A, Cacially C, Esselink E, vanDam Y, Schlachtmann B, Friend RH, Klapwijk TM, Hadziianoanou (1997) Adv Mater 9:127

    Google Scholar 

  68. Burin AL, Ratner MA (1998) J Chem Phys 109:6092

    Google Scholar 

  69. Shuai Z, Beljonne D, Silbey RJ, Brédas JL (2000) Phys Rev Lett 84:131

    Google Scholar 

  70. Hong T-M, Meng H-F (2001) Phys Rev B 63:075206

    Google Scholar 

  71. Wohlgenannt M, Tandon K, Mazumdar S, Ramasesha S, Vardeny ZV (2001) Nature 409:494

    Google Scholar 

  72. Virgili T, Cerullo G, Lüer L, Lanzani G, Gadermaier C, Bradley DDC (2003) Phys Rev Lett 90:247402

    Google Scholar 

  73. Baldo MA, O’Brien DF, You Y, Shoustikov A, Silbley S, Thompson ME, Forrest SR (1998) Nature 395:151

    Google Scholar 

  74. Cleave V, Yahioglu G, LeBarny P, Friend RH, Tessler N (1999) Adv Mater 11:285

    Google Scholar 

  75. Yersin H, Humbs W, Strasser J (1997) Coord Chem Rev 159:325

    Google Scholar 

  76. Yersin H, Humbs W, Strasser J (1997) Top Curr Chem 191:153

    Google Scholar 

  77. Yersin H, Strasser J (1997) J Lumin 72/74:462

    Google Scholar 

  78. Yersin H, Humbs W (1999) Inorg Chem 38:5820

    Google Scholar 

  79. Yersin H, Donges D (2001) Top Curr Chem 214:81

    Google Scholar 

  80. Lumb MD (ed) (1978) Luminescence spectroscopy. Academic Press, London

    Google Scholar 

  81. Glasbeeek M (2001) Top Curr Chem 213:95

    Google Scholar 

  82. Azumi T, Miki H (1997) Top Curr Chem 191:1

    Google Scholar 

  83. Komada Y, Yamauchi S, Hirota N (1986) J Phys Chem 90:6425

    Google Scholar 

  84. Ikeda S, Yamamoto S, Nozaki K, Ikeyama T, Azumi T, Burt JA, Crosby GA (1991) J Phys Chem 95:8538

    Google Scholar 

  85. Colombo MG, Hauser A, Güdel HU (1994) Top Curr Chem 171:143

    Google Scholar 

  86. Funayama T, Kato M, Kosugi H, Yagi M, Higuchi J, Yamauchi S (2000) Bull Chem Soc Jpn 73:1541

    Google Scholar 

  87. Finkenzeller WJ, Yersin H (2003) Chem Phys Lett 377:299

    Google Scholar 

  88. Hay PJ (2002) J Phys Chem A 106:1634

    Google Scholar 

  89. Yersin H, Schützenmeier S, Wiedenhofer H, von Zelewsky A (1993) J Phys Chem 97:13496

    Google Scholar 

  90. Schmidt J, Wiedenhofer H, von Zelewsky A, Yersin H (1995) J Phys Chem 99:226

    Google Scholar 

  91. Glasbeek M, Sitters R, van Veldhofen E, von Zelewsky A, Humbs W, Yersin H (1998) Inorg Chem 37:5159

    Google Scholar 

  92. Pierloot K, Ceulemans A, Merchán M, Serrano-Andrés L (2000) J Phys Chem A 104:4374

    Google Scholar 

  93. Humbs W, Yersin H (1996) Inorg Chem 35:2220

    Google Scholar 

  94. Yersin H, Donges D, Nagle JK, Sitters R, Glasbeek M (2000) Inorg Chem 39:770

    Google Scholar 

  95. Yersin H, Strasser J (2000) Coord Chem Rev 208:331

    Google Scholar 

  96. Strasser J, Homeier HHH, Yersin H (2000) Chem Phys 255:301

    Google Scholar 

  97. Yersin H, Donges D, Humbs W, Strasser J, Sitters R, Glasbeek M (2002) Inorg Chem 41:4915

    Google Scholar 

  98. Yersin H, Kratzer C (2002) Coord Chem Rev 229:75

    Google Scholar 

  99. Yersin H, Kratzer C (2002) Chem Phys Lett 362:365

    Google Scholar 

  100. Yersin H, Huber P, Wiedenhofer H (1994) Coord Chem Rev 132:35

    Google Scholar 

  101. Humbs W, Yersin H (1997) Inorg Chim Acta 265:139

    Google Scholar 

  102. Braun D, Huber P, Wudy J, Schmidt J, Yersin H (1994) J Phys Chem 98:8044

    Google Scholar 

  103. Huber P, Yersin H (1993) J Phys Chem 97:12705

    Google Scholar 

  104. Chan WK, Ng PK, Gong X, Hou S (1999) Appl Phys Lett 75:3920

    Google Scholar 

  105. Furata P, Brooks J, Thompson ME, Fréchet JMJ (2003) J Am Chem Soc 125:13165

    Google Scholar 

  106. Chen X, Liao J-L, Liang Y, Ahmed MO, Tseng H-E, Chen S-A (2003) J Am Chem Soc 125:636

    Google Scholar 

Download references

Acknowledgement

Financial support of the Bundesministerium für Bildung and Forschung (BMBF) is acknowledged.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Yersin, H. Triplet Emitters for OLED Applications. Mechanisms of Exciton Trapping and Control of Emission Properties. In: Transition Metal and Rare Earth Compounds. Topics in Current Chemistry, vol 241. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b96858

Download citation

  • DOI: https://doi.org/10.1007/b96858

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20948-5

  • Online ISBN: 978-3-540-39904-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics