Skip to main content

Excess Electron Transfer in Defined Donor-Nucleobase and Donor-DNA-Acceptor Systems

  • Chapter

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 236))

Abstract

The transfer of positive charge through DNA has been investigated in great detail over the last couple of years. In this area, major new mechanistic insights have been gained using defined acceptor modified DNA strands. Transport of exon electrons, in contrast, is much less well-explored. Our current mechanistic understanding is based on EPR spectroscopic studies of DNA material reduced using solvated electrons. Herein we report the development of defined donor-acceptor modified DNA double strands which allow the study of excess electron transfer with high precision. The model mimics the DNA repair process of DNA photolyases: they contain a reduced and deprotonated flavin as a light-triggered electron donor and a thymine dimer as the electron acceptor. The dimer performs a cycloreversion upon single electron reduction, which translates the electron capture event into a readily detectable strand break signal. Investigations with these model systems allowed us to clarify that electrons hop through DNA using pyrimidine bases as stepping stones.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pouget JP, Douki T, Richard MJ, Cadet J (2000) Chem Res Toxicol 13:541

    Google Scholar 

  2. Seidel CAM, Schulz A, Sauer MHM (1996) J Phys Chem 100:5541

    Google Scholar 

  3. Steenken S, Jovanovic SV (1997) J Am Chem Soc 119:617

    Google Scholar 

  4. Melvin T, Botchway S, Parker AW, O’Neill P (1995) Chem Comm 653

    Google Scholar 

  5. Debije MG, Milano MT, Bernhard WA (1999) Angew Chem Int Ed 38:2752

    Google Scholar 

  6. Holmlin RE, Dandlicker PJ, Barton JK (1997) Angew Chem Int Ed 36:2715

    Google Scholar 

  7. Giese B (2000) Acc Chem Res 33:631

    Google Scholar 

  8. Lewis FD, Letsinger RL, Wasielewski MR (2001) Acc Chem Res 34:159

    Google Scholar 

  9. Schuster GB (2000) Acc Chem Res 33:253

    Google Scholar 

  10. Giese B (2000) Chem Phys Chem 1:195

    Google Scholar 

  11. Giese B, Amaudrut J, Köhler A-K, Spormann M, Wessely S (2001) Nature 4112:318

    Google Scholar 

  12. Lewis FD, Miller SE, Hayes RT, Wasielewski MR (2002) J Am Chem Soc 124:11280

    Google Scholar 

  13. Barnett RN, Cleveland CL, Joy A, Landman U, Schuster GB (2001) Science 294:567

    Google Scholar 

  14. Lewis FD, Wu T, Zhang Y, Letsinger RL, Greenfield SR, Wasielewski MR (1997) Science 277:673

    Google Scholar 

  15. Santosh U, Schuster GB (2002) J Am Chem Soc 124:10986

    Google Scholar 

  16. Williams TT, Barton JK (2002) J Am Chem Soc 124:1840

    Google Scholar 

  17. Dotse AK, Boone EK, Schuster GB (2000) J Am Chem Soc 122:6825

    Google Scholar 

  18. Vivic DA, Odom DT, Núñez ME, Gianolio DA, McLaughlin LW, Barton JK (2000) J Am Chem Soc 122:8603

    Google Scholar 

  19. Burrows CJ, Muller JG (1998) Chem Rev 98:1109

    Google Scholar 

  20. Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. ASM Press, Washington

    Google Scholar 

  21. Lewis FD, Liu X, Wu Y, Miller SE, Wasielewski MR, Letsinger RL, Sanishvili R, Joachimiak A, Tereshko V, Egli M (1999) J Am Chem Soc 121:9905

    Google Scholar 

  22. Giese B, Wessely S, Sporman M, Lindemann U, Meggers E, Michel-Beyerle ME (1999) Angew Chem Int Ed 38:996

    Google Scholar 

  23. Cai L, Tabata H, Kawai T (2000) Appl Phys Lett 77:3105

    Google Scholar 

  24. Yoo K-H-, Ha DH, Lee J-O, Park JW, Kim J, Kim JJ, Lee H-Y, Kawai T, Choi HY (2001) Phys Rev Lett 87:1981021

    Google Scholar 

  25. Fink H-W, Schönenberger C (1999) Nature 398:407

    Google Scholar 

  26. Porath D, Bezryadin A, De Vries S, Dekker C (2000) Nature 403:635

    Google Scholar 

  27. Heelis PF, Hartman RF, Rose SD (1995) Chem Soc Rev 24:289

    Google Scholar 

  28. Carell T (1995) Angew Chem Int Ed 34:2491

    Google Scholar 

  29. Sancar A (1994) Biochemistry 33:2

    Google Scholar 

  30. Carell T, Burgdorf LT, Kundu LM, Cichon MK (2001) Curr Op Chem Biol S 491

    Google Scholar 

  31. Kanai S, Kikuna R, Toh H, Ryo H, Todo T (1997) J Mol Evol 45:535

    Google Scholar 

  32. Hitomi K, Nakamura H, Kim S-T, Mizikoshi T, Ishikawa T, Iwai S, Todo T (2001) J Biol Chem 276:10103

    Google Scholar 

  33. Yeh S-R, Falvey DE (1992) J Am Chem Soc 114:7313

    Google Scholar 

  34. Scannel MP, Fenick DJ, Yeh S-R, Falvey DE (1997) J Am Chem Soc 119:1971

    Google Scholar 

  35. Steenken S, Telo JP, Novais HM, Candeias LP (1992) J Am Chem Soc 114:4701

    Google Scholar 

  36. Scannel MP, Prakash G, Falvey DE (1997) J Phys Chem A 101:4332

    Google Scholar 

  37. Steenken S (1997) Biol Chem 378:1293

    Google Scholar 

  38. Zhongli XL, Sevilla MD (2001) J Phys Chem B 105:10115

    Google Scholar 

  39. Debije MG, Bernhard WA (2002) J Phys Chem A 106:4608

    Google Scholar 

  40. Voityuk AA, Michel-Beyerle ME, Rösch N (2001) Chem Phys Lett 342:231

    Google Scholar 

  41. Carell T, Epple R, Gramlich V (1996) Angew Chem Int Ed 35:620

    Google Scholar 

  42. Epple R, Wallenborn E-U, Carell T (1997) J Am Chem Soc 119:7440

    Google Scholar 

  43. Hartman RF, Rose SD (1992) J Am Chem Soc 114:3559

    Google Scholar 

  44. Carell T, Epple R (1998) Eur J Org Chem 7:1245

    Google Scholar 

  45. Cichon MK, Arnold S, Carell T (2002) Angew Chem Int Ed 51:767

    Google Scholar 

  46. Wagenknecht H-A, Stemp EDA, Barton JK (2000) Biochemistry 39:5483

    Google Scholar 

  47. Epple R, Carell T (1998) Angew Chem Int Ed 37:938

    Google Scholar 

  48. Epple R, Carell T (1999) J Am Chem Soc 121:7318

    Google Scholar 

  49. Schwögler A, Carell T (2000) Org Lett 2:1415

    Google Scholar 

  50. Butenandt J, Eker APM, Carell T (1998) Chem Eur J 4:642

    Google Scholar 

  51. Schwögler A, Burgdorf LT, Carell T (2000) Angew Chem Int Ed 39:3918

    Google Scholar 

  52. Kundu LM, Burgdorf LT, Kleiner O, Batschauer A, Carell T (2002) Chem Bio Chem 3:1053

    Google Scholar 

  53. Behrens C, Burgdorf LT, Schwögler A, Carell T (2002) Angew Chem Int Ed 114:1841

    Google Scholar 

  54. Dandlicker PJ, Holmlin RE, Barton JK (1997) Science 275:1465

    Google Scholar 

  55. Dandlicker PJ, Núñez ME, Barton JK (1998) Biochemistry 37:6491

    Google Scholar 

  56. Bixon M, Jortner J (2001) J Am Chem Soc 123:12556

    Google Scholar 

  57. Jortner J, Bixon M, Langenbacher T, Michel-Beyerle ME (1998) Proc Natl Acad Sci USA 95:12759

    Google Scholar 

  58. Pezeshk A, Symons MCR, McClymont JD (1996) J Phys Chem 100:18562

    Google Scholar 

  59. Messer A, Carpenter K, Forzley K, Buchanan J, Yang S, Razskazovskii Y, Cai Z, Sevilla MD (2000) J Phys Chem B 104:1128

    Google Scholar 

  60. Cai Z, Gu Z, Sevilla MD (2000) J Phys Chem B 104:10406

    Google Scholar 

  61. Nielsen PE, Egholm M (1999) Horizon Scientific Press, Norfolk

    Google Scholar 

  62. Cichon MK, Haas CH, Grolle F, Mees A, Carell T (2002) J Am Chem Soc 124:13984

    Google Scholar 

  63. Behrens C, Ober M, Carell T (2002) Eur J Org Chem 3281

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Carell .

Editor information

G.B. Schuster

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Behrens, C., Cichon, M.K., Grolle, F., Hennecke, U., Carell, T. (2004). Excess Electron Transfer in Defined Donor-Nucleobase and Donor-DNA-Acceptor Systems. In: Schuster, G. (eds) Long-Range Charge Transfer in DNA I. Topics in Current Chemistry, vol 236. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b94416

Download citation

  • DOI: https://doi.org/10.1007/b94416

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20127-4

  • Online ISBN: 978-3-540-39880-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics