Skip to main content

Control, modulation, and regulation of cell calcium

  • Chapter
  • First Online:
Book cover Reviews of Physiology, Biochemistry and Pharmacology, Volume 90

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 90))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Cao :

extracellular ionized calcium concentration

Cai :

intracellular (cytosolic) ionized calcium concentration

CN:

cyanide

CCCP:

carbonyl-cyanide, m-chlorophenylhydrazone

Cyclic AMP (GMP):

adenosine (guanosine) 3′-5′-monophosphate

Dibutyryl cyclic AMP:

dibutyryl adenosine 3′-5′-monophosphate

DNP:

dinitrophenol

EDTA:

ethylenediamine tetraacetic acid

EGTA:

ethyleneglycol-bis-(β-aminoethyl ether)-N,N′-tetraacetic acid

ER:

endoplasmic reticulum

FCCP:

carbonyl cyanide,p-trifluoromethoxyphenylhydrazone

f/cs:

femtomoles cm−2s−1

Hepes:

N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid

IAA:

iodoacetic acid

Nao :

extracellular sodium concentration

Nai :

intracellular (cystolic) sodium concentration

p/cs:

picomoles cm−2s−1

SER:

smooth endoplasmic reticulum

SR:

sacroplasmic reticulum

Tris:

tris (hydroxymethyl)aminomethane

TTX:

tetrodotoxin

References

  • Adrian RH (1956) The effect of internal and external potassium concentration on the membrane potential of frog muscle. J Physiol (Lond) 133:631–658

    Google Scholar 

  • Affolter H, Chiesi M, Dabrowska R, Carafoli E (1976) Calcium regulation in heart cells. The interaction of mitochondrial and sarcoplasmic reticulum with troponin-bound calcium. Eur J Biochem 67:389–396

    Google Scholar 

  • Aguirre J, Pinto JEB, Trifaro JM (1977) Calcium movements during the release of catecholamines from the adrenal medulla: effects of methoxyverapamil and external cations. J Physiol (Lond) 269:371–394

    Google Scholar 

  • Agus ZS, Gardner LB, Beck LH, Goldberg M (1973) Effect of parathyroid hormone on renal reabsorption of calcium, sodium and phosphate. Am J Physiol 224:1143–1148

    Google Scholar 

  • Akerman KEO (1978a) Effect of pH and Ca2+ on the retention of Ca2+ by rat liver mitochondria. Arch Biochem Biophys 189:256–252

    Google Scholar 

  • Akerman KEO (1978b) Changes in membrane potential during calcium ion influx and efflux across the mitochondrial membrane. Biochim Biophys Acta 502:359–366

    Google Scholar 

  • Akerman KEO, Wikström MKF (1979) (Ca2+ + Mg2+)-stimulated ATPase activity of rabbit myometrium plasma membrane is blocked by oxytocin. FEBS Lett 97:283–287

    Google Scholar 

  • Allard C, Mathieu R, deLamirande G, Cantero A (1952) Mitochondrial population in mammalian cells. I. Description of a counting technique and preliminary results in rat liver in different physiological and pathological conditions. Cancer Res 12:407–412

    Google Scholar 

  • Alonso GL, Bazerque PM, Arrigo DM, Tumilasci OR (1971) Adenosine triphosphate-dependent calcium uptake by rat submaxillary gland microsomes. J Gen Physiol 58:340–350

    Google Scholar 

  • Andersson R, Nilsson K, Wikberg Y, Johansson S, Momhe-Lundholm E, Lundholm L (1975) Cyclic nucleotides and the contraction of smooth muscle. Adv Cyclic Nucleotide Res 5:491–518

    Google Scholar 

  • Andia-Waltenbaugh AM, Friedmann N (1978) Hormone sensitive calcium uptake by liver microsomes. Biochem Biophys Res Commun 82:603–608

    Google Scholar 

  • Andia-Waltenbaugh AM, Kimura S, Wood J, Divakaran P, Friedmann N (1978) Effects of glucagon, insulin and cyclic-AMP on mitochondrial calcium uptake in the liver. Life Sci 23:2437–2444

    Google Scholar 

  • Anghileri LJ (1972) Phospholipids and calcium uptake in experimental tumors. Oncology 28:35–51

    Google Scholar 

  • Ash GR, Bygrave FL (1977) Ruthenium red as a probe in assessing the potential of mitochondria to control intracellular calcium in liver. FEBS Lett 78:166–168

    Google Scholar 

  • Ashley CC, Lea TJ (1978) Calcium fluxes in single muscle fibres measured with a glass scintillation probe. J Physiol (Lond) 282:307–331

    Google Scholar 

  • Ashley CC, Caldwell PC, Lowe AG (1972) The efflux of calcium from single crab and barnacle muscle fibres. J Physiol (Lond) 223:735–755

    Google Scholar 

  • Assimacopoulos-Jeannet FD, Blackmore PF, Exton JH (1977) Studies on α-adrenergic activation of hepatic glucose output. (Studies on role of Ca++). J Biol Chem 252:2662–2669

    Google Scholar 

  • Au KS (1979) Observation on the protein activator of erythrocyte membrane (Ca2+-Mg2+) ATPase. Int J Biochem 10:637–643

    Google Scholar 

  • Aull F (1967) Measurement of the electrical potential difference across the membrane of the Ehrlich mouse ascites cell. J Cell Physiol 69:21–32

    Google Scholar 

  • Azzone GF, Pozzan T, Massari S, Bragadin M, Dell'Antone P (1977) H+ site ratio and steady state distribution of divalent cations in mitochondria. FEBS Lett 78:21–24

    Google Scholar 

  • Babcock DF, Chen J-L J, Yip BP, Lardy HA (1979) Evidence for mitochondrial localization of the hormone-responsive pool of Ca++ in isolated hepatocytes. J Biol Chem 254:8117–8120

    Google Scholar 

  • Badyshtov BA, Seredenin SB (1977) Investigation of the mechanism of action of ouabain and cyclic AMP of the transport of calcium ions by rat heart mitochondria. Bull Exp Biol Med Engl Transl 83:155–158

    Google Scholar 

  • Baker PF (1972) Transport and metabolism of calcium ions in nerve. Prog Biophys Mol Biol 24:177–223

    Google Scholar 

  • Baker PF (1976) Regulation of intracellular Ca and Mg in squid axons. Fed Proc 35:2589–2595

    Google Scholar 

  • Baker PF (1978) The regulation of intracellular calcium in giant axons of Loligo and myxicola. Ann NY Acad Sci 307:250–268

    Google Scholar 

  • Baker PF, Blaustein MP (1968) Sodium dependent uptake of calcium by crab nerve. Biochim Biophys Acta 150:167–170

    Google Scholar 

  • Baker PF, Glitsch HG (1973) Does metabolic energy participate directly in the Na+ dependent extension of Ca+2 ions from squid giant axons. J Physiol (Lond) 233:44P–46P

    Google Scholar 

  • Baker PF, Glitsch HG (1975) Voltage-dependent changes in the permeability of nerve membranes to calcium and other divalent ions. Philos Trans R Soc Lond (Biol) 270:389–409

    Google Scholar 

  • Baker PF, Honerjager P (1978) Influence of carbon dioxide on the level of ionized calcium in squid axon. Nature 273:160–161

    Google Scholar 

  • Baker PF, McNaughton PA (1976a) Kinetics and energetics of calcium efflux from intact squid giant axons. J Physiol (Lond) 259:103–144

    Google Scholar 

  • Baker PF, McNaughton PA (1976b) The effect of membrane potential on the calcium transport systems in squid axons. J Physiol (Lond) 260:24–25P

    Google Scholar 

  • Baker PF, McNaughton PA (1977) Selective inhibition of the Ca-dependent Na efflux from intact squid axons by a fall in intracellular pH. J Physiol (Lond) 269:78–79P

    Google Scholar 

  • Baker PF, McNaughton PA (1978) The influence of extracellular calcium binding on the calcium efflux from squid axons. J Physiol (Lond) 276:127–150

    Google Scholar 

  • Baker PF, Schlaepfer W (1975) Calcium uptake by axoplasm extracted from giant axons of Loligo. J Physiol (Lond) 249)37P–38P

    Google Scholar 

  • Baker PF, Blaustein MP, Hodgkin AL, Steinhardt RA (1969) The influence of calcium on sodium efflux in squid axon. J Physiol (Lond) 200:431–458

    Google Scholar 

  • Baker PF, Hodgkin AL, Ridgway EB (1971) Depolarization and calcium entry in squid giant axons. J Physiol (Lond) 218:709–755

    Google Scholar 

  • Barnard T, Afzelius BA (1972) The matrix granules of mitochondria: a review. Subcell Biochem 1:375–389

    Google Scholar 

  • Barritt GJ, Thorn RFW, Hughes BP (1978) Effects of hormones and N6O27-dibutyrul-adenosine 3′5′-cyclic monophosphate, administered in vivo, on phosphate transport and metabolism in isolated rat liver mitochondria. Biochem J 172:577–585

    Google Scholar 

  • Baski SN, Kenny AD (1978) Vitamin D metabolism in Japanese quail: gonadal hormones and dietary calcium. Am J Physiol 234:E622–E628

    Google Scholar 

  • Batra SC (1973a) The role of mitochondrial calcium uptake in contraction and relaxation of the human myometrium. Biochim Biophys Acta 305:428–432

    Google Scholar 

  • Batra SC (1973b) Effect of some estrogens and progesterone on calcium uptake and calcium release by myometrial mitochondria. Biochem Pharmacol 22:803–809

    Google Scholar 

  • Batra SC (1974) The effects of drugs on calcium uptake and calcium release by mitochondria and sarcoplasmic reticulum of frog skeletal muscle. Biochem Pharmacol 23:89–101

    Google Scholar 

  • Batra SC, Bengtsson B (1978) Effects of diethylstilboestrol and ovarian steroids on the contractile responses and calcium movements in rat uterine smooth muscle. J Physiol (Lond) 276:329–342

    Google Scholar 

  • Batra SC, Daniel EE (1971) ATP-dependent Ca uptake by subcellular fractions of uterine smooth muscle. Comp Biochem Physiol 38A:369–385

    Google Scholar 

  • Baumrucker CR, Keenan TW (1975) Membranes of mammary glands. X. Adenosine triphosphate dependent calcium accumulation by Golgi apparatus rich fraction from bovine mammary gland. Exp Cell Res 90:253–260

    Google Scholar 

  • Bayer R, Kalusche D, Kaufman R, Mannhold R (1975) Inotropic and electrophysiological actions of verapamil and D-600 in mammalian myocardium. III. Effects of optical isomers on transmembrane action potentials. Arch Pharmacol 290:81–97

    Google Scholar 

  • Beckmann A, Jenssen HL, Kalkoff W, Redman K (1970) Das bioelektrische Potential an der zytoplasmatischen Membran der Granulozyten. Experientia 26:186–187

    Google Scholar 

  • Beigelman DM, Hollander PB (1962) Effect of insulin upon resting electrical potential of adipose tissue. Proc. Soc Exp Biol Med 110:590–595

    Google Scholar 

  • Bennett HS (1963) Morphological aspects of extracellular polysaccharides. J Histochem Cytochem 11:14–23

    Google Scholar 

  • Bent-Hansen L, Capito K, Hedeskov CJ (1979) The effect of calcium on somatostatin inhibition of insulin release and cyclic AMP production in mouse pancreatic islets. Biochim Biophys Acta 585:240–249

    Google Scholar 

  • Bernhardt J, Pauly H (1967) Das Membranpotential von Ehrlich-Aszitestumorzellen. Biophysik 4:101–108

    Google Scholar 

  • Berridge MJ (1975) The interaction of cyclic nucleotides and calcium in the control of cellular activity. Adv. Cyclic Nucleotide Res 6:1–98

    Google Scholar 

  • Berridge MJ (1979) Relationship between calcium and the cyclic nucleotides in ion secretion. In: Binder HJ (ed) Mechanisms of intestinal secretion. Alan R Liss, New York, pp 65–82

    Google Scholar 

  • Berridge MJ, Fain JN (1979) Inhibition of phosphatidylinositol synthesis and the inactivation of calcium entry after prolonged exposure of the blowfly salivary gland to 5-hydroxytryptamine. Biochem J 178:59–69

    Google Scholar 

  • Berridge MJ, Oschman JC, Wall BJ (1975) Intracellular calcium reservoirs in Calliphora salivary glands. In: Carafoli E, Clementi F, Drabikowski W, Magreth A (eds) Calcium transport in contraction and secretion. North Holland, Amsterdam, pp 131–138

    Google Scholar 

  • Besley GTN, Snart RN (1971) Effect of vasopressin on the uptake of calcium ions by kidney mitochondria and on the concentration of adenosine 3′–5 cyclic monophosphate in toad bladder. J Physiol (Lond) 125:60P–61P

    Google Scholar 

  • Bhalla RC, Webb RC, Sing D, Brock T (1978) Role of cyclic AMP in rat aortic microsomal phosphorylation and calcium uptake. Am J Physiol 234:H508–H514

    Google Scholar 

  • Bianchi CP (1968) Cell calcium. Butterworth, London

    Google Scholar 

  • Bianchi CP, Lakshminarayanaiah N (1978) Calcium uptake and exchange in leg nerves of the crab Libinia emarginata. J Neurochem 30:27–33

    Google Scholar 

  • Bianchi CP, Shanes AM (1959) Calcium influx in skeletal muscle at rest, during activity and during potassium contracture. J Gen Physiol 42:803–815

    Google Scholar 

  • Biddulph DM, Currie MG, Wrenn RW (1979) Effects and interactions of parathyroid hormone and prostaglandins on adenosine 3′5′ monophosphate concentrations in isolated renal tubules. Endocrinology 104:1164–1171

    Google Scholar 

  • Biddulph DM, Wrenn RW (1977a) Effect of parathyroid hormone on cyclic AMP, cyclic GMP and efflux of calcium in isolated renal tubules. J Cyclic Nucleotide Res 3:129–138

    Google Scholar 

  • Biddulph DM, Wrenn RW (1977b) Morphology and hormonal responsiveness of renal cortical tubules in vitro. Am J Anat 150:539–558

    Google Scholar 

  • Biedermann N (1968) Das Verhalten der Membranpotentiale von Leberzellen der Ratte während und nach Gefäßunterbindungen. Acta Biol Med Germ 21:827–833

    Google Scholar 

  • Binderman I, Duskin D, Harell A, Sachs L, Katchalski E (1974) Formation of bone tissue in culture from isolated bone cells. J Cell Biol 61:427–439

    Google Scholar 

  • Blackmore PF, Brumley FT, Marks JL, Exton JH (1978) Studies on α-adrenergic activation of hepatic glucose output. Relationship between α-adrenergic stimulation of calcium efflux and activation of phosphorylase in isolated rat liver parenchymal cells. J Biol Chem 253:4851–4858

    Google Scholar 

  • Blackmore PF, Assimacopoulos-Jeannet FD, Chan TM, Exton JH (1979a) Studies on α-adrenergic activation of hepatic glucose output. Insulin inhibition of α-adrenergic and glucagon actions in normal and calcium-depleted hepatocytes. J Biol Chem 254:2828–2834

    Google Scholar 

  • Blackmore PF, Dehaye JP, Exton JH (1979b) Studies on α-adrenergic activation of hepatic glucose output. The role of mitochondrial calcium release in α-adrenergic activation of phosphorylase in perfused rat liver. J Biol Chem 254:6945–6950

    Google Scholar 

  • Blackmore PF, El-Refai MF, Exton JH (1979c) Alpha-adrenergic blockage and inhibiton of A23187 mediated Ca2+ uptake by the calcium antagonist verpamil in rat liver cells. Mol Pharmacol 15:598–606

    Google Scholar 

  • Blaustein MP (1974) The interrelationship between sodium and calcium fluxes across cell membranes. Rev Physiol Biochem Pharmacol 70:33–82

    Google Scholar 

  • Blaustein MP (1975) Effects of potassium veratridine and scorpion venom on calcium accumulation and transmitter release by nerve terminals in vitro. J Physiol (Lond) 247:617–655

    Google Scholar 

  • Blaustein MP (1976) The ins and outs of calcium transport in squid axons: internal and external ion activation of calcium efflux. Fed Proc 35:2574–2578

    Google Scholar 

  • Blaustein MP (1977a) Effects of internal and external cations and of ATP on sodium-calcium and calcium-calcium exchange in squid axons. Biophys J 20:79–111

    Google Scholar 

  • Blaustein MP (1977b) Sodium ions, calcium ions, blood pressure regulation and hypertension: a reassessment and a hypothesis. Am J Physiol 232:C165–C173

    Google Scholar 

  • Blaustein MP, Ector AC (1975) Barbiturate inhibition of calcium uptake by depolarized nerve terminals in vitro. Mol Pharmacol 11:369–378

    Google Scholar 

  • Blaustein MP, Ector AC (1976) Carrier-mediated sodium dependent and calcium dependent calcium efflux from pinched-off presynaptic nerve terminals (synaptosomes) in vitro. Biochim Biophys Acta 419:295–308

    Google Scholar 

  • Blaustein MP, Hodgkin AL (1969) The effect of cyanide on the efflux of calcium from squid axons. J Physiol (Lond) 200:497–527

    Google Scholar 

  • Blaustein MP, Oborn CJ (1975) The influence of sodium on calcium fluxes in pinched-off nerve terminals in vitro. J Physiol (Lond) 247:657–686

    Google Scholar 

  • Blaustein MP, Russell JM (1975) Sodium-calcium exchange and calcium-calcium exchange in internally dialyzed squid giant axons. J Membr Biol 22:285–312

    Google Scholar 

  • Blaustein MP, Wiesmann WP (1970) Effect of sodium ions on calcium movements in isolated synaptic terminals. Proc Natl. Acad Sci USA 66:664–671

    Google Scholar 

  • Blaustein MP, Johnson EM, Needleman P (1972) Calcium-dependent norepinephrine release from presynaptic nerve endings in vitro. Proc Natl Acad Sci USA 69:2237–2240

    Google Scholar 

  • Blaustein MP, Russell JM, DeWeer P (1974) Calcium efflux from internally dialyzed squid axons: the influence of external and internal cations. J Supramol Struct 2:558–581

    Google Scholar 

  • Blaustein MP, Kendrick NC, Fried RC, Ratzlaff RW (1977) Calcium metabolism of the mammalian presynaptic nerve terminal: lessons from the synaptosome. In: Cowan WM, Ferrendelli JA (eds) Approaches to the cell biology of neurones. Society for Neuroscience Symposia, Society for Neuroscience, Bethesda, pp 172–194

    Google Scholar 

  • Blaustein MP, Ratzlaff RW, Kendrick NC, Schweitzer ES (1978a) Calcium buffering in presynaptic nerve terminals. I. Evidence for involvement of a nonmitochondrial ATP-dependent sequestration mechanism. J Gen Physiol 72:15–41

    Google Scholar 

  • Blaustein MP, Ratzlaff RW, Schweitzer ES (1978b) Calcium buffering in presynaptic nerve terminals. II. Kinetic properties of the nonmitochondrial Ca sequestration mechanism. J Gen Physiol 72:43–66

    Google Scholar 

  • Blaustein MP, Ratzlaff RW, Kendrick NK (1978c) The regulation of intracellular calcium in presynaptic nerve terminals. Ann NY Acad Sci 307:195–211

    Google Scholar 

  • Blinks JK (1978) Measurement of calcium ion concentration with phosphoproteins. Ann NY Acad Sci 307:71–85

    Google Scholar 

  • Blinks JR, Pendergast FG, Allen DG (1976) Phosphoproteins on biological calcium indicators. Pharmacol Rev 28:1–93

    Google Scholar 

  • Blitz AL, Fine RE, Toselli PA (1977) Evidence that coated vesicles isolated from brain are calcium-sequestering organelles resembling sarcoplasmic reticulum. J Cell Biol 75:135–147

    Google Scholar 

  • Bond GH, Clough DL (1973) A soluble protein activator of (Mg2++Ca2+)-dependent ATPase in human red cell membranes. Biochim Biophys Acta 323:592–599

    Google Scholar 

  • Bond GH, Green JW (1971) Effects of monovalent cations on the (Mg2++Ca2+)-dependent ATPase of the red cell membrane. Biochim Biophys Acta 241:393–398

    Google Scholar 

  • Bonucci E, Derenzini M, Marinozzi V (1973) The organic-inorganic relationship in calcified mitochondria. J Cell Biol 59:185–211

    Google Scholar 

  • Borg J, Mark J, Mandel P (1979) Effects of amino acids on calcium uptake by glial and neuroblastoma cells. J Neurobiol 10:31–40

    Google Scholar 

  • Borle AB (1968a) Calcium metabolism in HeLa cells and the effects of parathyroid hormone. J Cell Biol 36:567–582

    Google Scholar 

  • Borle AB (1968b) Effects of purified parathyroid hormone on the calcium metabolism of monkey kidney cells. Endocrinology 83:1316–1322

    Google Scholar 

  • Borle AB (1968c) Calcium transport in cell culture and the effects of parathyroid hormone. In: Talmage RV, Belanger LF, Clark I (eds) Parathyroid hormone and thyrocalcitonin (calcitonin). Excerpta Medica, New York, pp 258–272

    Google Scholar 

  • Borle AB (1969a) Kinetic analyses of calcium movements in HeLa cell cultures. I. Calcium influx. J Gen Physiol 53:43–56

    Google Scholar 

  • Borle AB (1969b) Kinetic analyses of calcium movements in HeLa cell cultures. II. Calcium efflux. J Gen Physiol 53:57–69

    Google Scholar 

  • Borle AB (1969c) Effects of thyrocalcitonin on calcium transport in kidney cells. Endocrinology 85:194–199

    Google Scholar 

  • Borle AB (1970a) Kinetic analyses of calcium movements in cell cultures. III. Effect of calcium and parathyroid hormone in kidney cells. J Gen Physiol 55:163–186

    Google Scholar 

  • Borle AB (1970b) Kinetic analyses of calcium movements in cell cultures. IV. Effects of phosphate and parathyroid hormone in kidney cells. Endocrinology 86:1389–1393

    Google Scholar 

  • Borle AB (1971a) Effets du phosphate sur les mouvements du calcium en cultures cellulaires. In: Hioco DJ (ed) Phosphate et metabolisme phosphocalcique. Expansion Scientifique, Paris, pp 29–43

    Google Scholar 

  • Borle AB (1971b) Calcium transport in kidney cells and its regulation. In: Nichols G Jr, Wasserman RH (eds) Cellular mechanisms for calcium transfer and homeostasis. Academic Press, New York, pp 151–174

    Google Scholar 

  • Borle AB (1972a) Kinetic analyses of calcium movements in cell cultures. V. Intracellular calcium distribution in kidney cells. J Membr Biol 10:45–66

    Google Scholar 

  • Borle AB (1972b) Parathyroid hormone and cell calcium. In: Talmage RV, Munson PL (eds) Calcium, parathyroid hormone and the calcitonins. Excerpta Medica, Amsterdam, pp 484–491

    Google Scholar 

  • Borle AB (1973a) Calcium metabolism at the cellular level. Fed Proc 32:1944–1950

    Google Scholar 

  • Borle AB (1973b) Cyclic AMP regulation of calcium efflux from liver, kidney and heart mitochondria. J Int Res Commun 1:9

    Google Scholar 

  • Borle AB (1974a) Kinetic studies of calcium movements in intestinal cells: effect of vitamin D deficiency and treatment. J. Membr Biol 16:207–220

    Google Scholar 

  • Borle AB (1974b) Cyclic AMP stimulation of calcium efflux from kidney, liver and heart mitochondria. J Membr Biol 16:221–236

    Google Scholar 

  • Borle AB (1975a) Regulation of cellular calcium metabolism and calcium transport by calcitonin. J Membr Biol 21:125–146

    Google Scholar 

  • Borle AB (1975b) Methods for assessing hormone effects on calcium fluxes in vitro. In: Hardman JG, O'Malley BW (eds) Methods in enzymology, hormone action. Part D: Isolated cells, tissues and organ systems. Academic Press, New York, v 39, pp 513–573

    Google Scholar 

  • Borle AB (1975c) Regulation of the mitochondrial control of cellular calcium homeostasis and calcium transport by phosphate, parathyroid hormone, calcitononin, vitamin D and cyclic AMP. In: Talmage RV, Owen M, Parsons JA (eds) Calcium regulating hormones. Excerpta Media, Amsterdam, pp 217–228

    Google Scholar 

  • Borle AB (1975d) Modulation of mitochondrial control of cytoplasmic and calcium activity. In: Carafoli E, Clementi F, Drabikowski W, Magreth A (eds) Calcium transport in contraction and secretion. North Holland, New York, p 77

    Google Scholar 

  • Borle AB (1976) On the problem of the release of mitochondrial calcium by cyclic AMP. J Membr Biol 29:205–208

    Google Scholar 

  • Borle AB (1978) On the difficulty of assessing the role of extracellular calcium in cell function. Ann NY Acad Sci 307:431–432

    Google Scholar 

  • Borle AB (1979) Na-Ca exchange and renal cell Ca homeostasis. Fed Proc 38:1392

    Google Scholar 

  • Borle AB (1981) Pittfalls of the 45Ca method. Cell Calcium (in press)

    Google Scholar 

  • Borle AB, Anderson JH (1976) A cybernetic view of cell calcium metabolism. In: Duncan CJ (ed) Calcium in biological systems. Soc Exp Biol Symp, pp 141–160

    Google Scholar 

  • Borle AB, Briggs FN (1968) Microdetermination of calcium in biological material by automatic fluorometric titration. Anal Chem 40:339–344

    Google Scholar 

  • Borle AB, Clark I (1981) Effects of phosphate induced hyperparathyroidism and parathyroidectomy on rat kidney calcium in vivo. Am J Physiol (in press)

    Google Scholar 

  • Borle AB, Loveday J (1968) Effects of temperature, potassium and calcium on the electrical potential difference in HeLa cells. Cancer Res 28:2401–2405

    Google Scholar 

  • Borle AB, Studer R (1978) Effects of calcium ionophores on the transport and distribution of calcium in isolated cells and in liver and kidney slices. J Membr Biol 38:51–72

    Google Scholar 

  • Borle AB, Uchikawa T (1978) Effects of parathyroid hormone on the distribution and transport of calcium in cultured kidney cells. Endocrinology 102:1725–1732

    Google Scholar 

  • Borle AB, Uchikawa T (1979) Effects of adenosine 3′,5′-monophosphate dibutyryl adenosine 3′,5′-monophosphate, aminophylline and imidazole on renal cellular calcium metabolism. Endocrinology 104:122–129

    Google Scholar 

  • Bornet EP, Entman ML, Van Winkle WB, Schwartz A, Lehotay DC, Levey, GS (1977) Cyclic AMP modulation of calcium accumulation by sarcoplasmic reticulum from fast skeletal musle. Biochim Biophys Acta 468:188–193

    Google Scholar 

  • Brachet J (1978) The hormonal induction of maturation in amphibian oocytes. Med Biol 56:304–309

    Google Scholar 

  • Brading AF (1973) Ion distribution and ion movements in smooth muscle. Philos Trans R Soc Lond (Biol) 265:35–46

    Google Scholar 

  • Brand MD, Chen CH, Lehninger AL (1976) Stoichiometry of the ejection during respiration-dependent accumulation of Ca2+ by rat liver mitochondria. J Biol Chem 251:968–974

    Google Scholar 

  • Brandt PW (1962) A consideration of the extraneous coats of the plasma membrane. Circulation 26:1075–1091

    Google Scholar 

  • Brehm P, Eckert R (1978) Calcium entry leads to inactivation of calcium channel in paramecium. Science 202:1203–1206

    Google Scholar 

  • Brierly GP, Murer E, Bachmann E (1964) Studies on ion transport. III. The accumulation of calcium and inorganic phosphate by heart mitochondria. Arch Biochem Biophys 105:89–102

    Google Scholar 

  • Brink F (1954) The role of calcium ions in neural processes. Pharmacol Rev 6:243–298

    Google Scholar 

  • Brinley FJ Jr (1968) Sodium and potassium fluxes in isolated barnacle muscle fibers. J Gen Physiol 51:445–477

    Google Scholar 

  • Brinley FJ Jr (1976) Calcium and magnesium metabolism in cephalopod axons. Fed Proc 35:2572–2595

    Google Scholar 

  • Brinley FJ Jr (1978) Calcium buffering in squid axons. Ann Rev. Biophys Bioeng 7:363–392

    Google Scholar 

  • Brinley FJ Jr, Mullins LJ (1967) Sodium extrusion by internally dialyzed squid axons. J Gen Physiol 50:2303–2331

    Google Scholar 

  • Brinley FJ Jr, Mullins LJ (1974) Effects of membrane potential on sodium and potassium fluxes in squid axons. Ann NY Acad Sci 242:406–433

    Google Scholar 

  • Brinley FJ Jr, Scarpa A (1975) Ionized magnesium concentration in axoplasm of dialyzed squid axons. FEBS Lett 50:82–85

    Google Scholar 

  • Brinley FJ Jr, Spangler SG, Mullins LJ (1975) Calcium and EDTA fluxes in dialyzed squid axons. J Gen Physiol 66:223–250

    Google Scholar 

  • Brinley FJ Jr, Tiffert T, Scarpa A (1978) Mitochondria and other calcium buffers of squid axon studied in situ. J Gen Physiol 72:101–127

    Google Scholar 

  • Brinley FJ Jr, Tiffert T, Scarpa A, Mullins LJ (1977) Intracellular buffering capacity in isolated squid axons. J Gen Physiol 70:355–384

    Google Scholar 

  • Brisson GR, Malaisse WJ (1973) The stimulus-secretion coupling of glucose induced insulin release. XI. Effects of theophylline and epinephrine on 45Ca efflux from perfused islets. Metabolism 22:455–465

    Google Scholar 

  • Brisson GR, Malaisse-Lagae F, Malaisse WJ (1972) The stimulus secretion coupling of glucose-induced insulin release. VII. A proposed site of action for adenosine 3′,5′-cyclic monophosphate. J Clin Invest 51:232–241

    Google Scholar 

  • Brömme HJ, Dargel R (1979) Effect of in vivo and in vitro application of glucagon, insulin and epinephrine on Ca++-transport properties of liver mitochondria. Acta Biologica et Medica Germanica 38:1365–1977

    Google Scholar 

  • Brown HF, McNaughton PA, Noble D, Noble SJ (1975) Adrenergic control of pacemaker currents. Philos Trans R Soc Lond (Biol) 270:527–537

    Google Scholar 

  • Bruns DE, McDonald JM, Jarett L (1976) Energy-dependent calcium transport in endoplasmic reticulum of adipocytes. J Biol Chem 251:7191–7197

    Google Scholar 

  • Burgos MH (1960) The role of amorphous cellular coatings in active transport. Anat Rec 137:171

    Google Scholar 

  • Burnatowska MA, Harris CA, Sutton RAL, Dirks JH (1977) Effect of PTH and cAMP on renal handling of calcium, magnesium and phosphate in the hamster. Am J Physiol 233:F514–F518

    Google Scholar 

  • Burton J, Godfraind T (1974) Sodium-calcium sites in smooth muscle and their accessibility to lanthanum. J Physiol (Lond) 241:287–298

    Google Scholar 

  • Busselen P, Carmeliet E (1973) Protagonistic effects of Na and Ca on tension development in cardiac muscle at low extracellular Na concentrations. Nature New Biol 243:57–59

    Google Scholar 

  • Butlen D, Jard S (1972) Renal handling of 3′,5′-cyclic AMP in the rat. Pfluegers Arch 331:172–190

    Google Scholar 

  • Bygrave FL (1967) The ionic environment and metabolic control. Nature 214:667–671

    Google Scholar 

  • Bygrave FL (1976) Mitochondrial calcium transport and the regulation of metabolism by calcium in tumor cells. In: Criss WE, Ono T, Sabine JR (eds) Control mechanisms in cancer. Raven Press, New York, pp 411–423

    Google Scholar 

  • Bygrave FL (1977) Mitochondrial calcium transport. Curr Top Bioenergetics 6:259–318

    Google Scholar 

  • Bygrave FL (1978) Mitochondria and the control of intracellular calcium. Biol Rev 53:43–79

    Google Scholar 

  • Bygrave FL, Ramachandran C, Smith RL (1977) On the mechanism by which inorganic phosphate stimulates mitochondrial calcium transport. FEBS Lett 83:155–158

    Google Scholar 

  • Bygrave FL, Reed KC, Spencer T (1971a) Cooperative interactions in energy-dependent accumulation of Ca2+ by isolated rat liver mitochondria. Nature New Biol 230:89

    Google Scholar 

  • Bygrave FL, Reed KC, Spencer T (1971b) Sigmoidal kinetics associated with Ca2+ uptake and related ATPase in rat liver mitochondria. In: Quagliariello E, Papa S, Rossi CS (eds) Energy transduction in respiration and photosynthesis. Adriatica Editrice, Bari, pp 981–988

    Google Scholar 

  • Bygrave FL, Trauter CJ (1978) The subcellular location, maturation and response to increased plasma glucagon of ruthenium red-insensitive calcium-ion transport in rat liver. Biochem J 174:1021–1030

    Google Scholar 

  • Caldwell PC (1971) Calcium movement in muscle. In: Podolsky RJ (ed) Contractility of muscle cells and related processes. Prentice Hall, Englewood Cliff, pp 105–114

    Google Scholar 

  • Calixto JB, Aucélio JG, Turkiewicz A (1979) Relationship between modulation by estradiol, progesterone and calcium upon the pharmacological reactivity of uteri of dogs. Res Commun Chem Pathol Pharmacol 25:447–460

    Google Scholar 

  • Caputo C, Bolanos P (1978) Effect of external sodium and calcium on calcium efflux in frog striated muscle. J Membr Biol 41:1–14

    Google Scholar 

  • Caputo CB, Meadows D, Raisz LG (1976) Failure of estrogens and androgens to inhibit bone resorption in tissue culture. Endocrinology 98:1065–1068

    Google Scholar 

  • Carafoli E (1967) In vivo effect of uncoupling agents on the incorporation of calcium and strontium into mitochondria and other subcellular fractions of rat liver. J Gen Physiol 50:1849–1864

    Google Scholar 

  • Carafoli E (1976) Mitochondrial calcium transport and calcium binding proteins. In: Packer L, Gomez-Puyou A (eds) Mitochondria, bioenergetics, biogenesis and membrane structure. Academic Press, New York, pp 47–60

    Google Scholar 

  • Carafoli E, Azzi A (1972) The affinity of mitochondria for calcium. Experientia 27:906–908

    Google Scholar 

  • Carafoli E, Crompton M (1976) Calcium ions and mitochondria. Soc Exp Biol Symp 30:89–115

    Google Scholar 

  • Carafoli E, Crompton M (1978a) The regulation of intracellular calcium by mitochondria. Ann NY Acad Sci 307:269–284

    Google Scholar 

  • Carafoli E, Crompton M (1978b) The regulation of intracellular calcium. Curr Top Membr Transp 10:151–216

    Google Scholar 

  • Carafoli E, Crompton M, Malmström K, Siegel E, Salzmann M, Chiesi M, Affolter H (1977) Mitochondrial calcium transport and the intracellular calcium homeostasis. In: Semenza G, Carafoli E (eds) Biochemistry of membrane transport. FEBS Symposium No. 42, Springer, Berlin Heidelberg New York, pp 535–551

    Google Scholar 

  • Carafoli E, Crovetti F (1973) Interactions between prostaglandin E1 and calcium at the level of the mitochondrial membrane. Arch Biochem Biophys 154:40–46

    Google Scholar 

  • Carafoli E, Gamble RL, Rossi CS, Lehninger AL (1967) Super-stoichiometric ratios between ion movements and electron transport in rat liver mitochondria. J Biol Chem 242:1199–1204

    Google Scholar 

  • Carafoli E, Lehninger AL (1971) A survey of the interaction of calcium ions with mitochondria from different tissues and species. Biochem J 122:681–690

    Google Scholar 

  • Carafoli E, Malmström K, Sigel E, Crompton M (1976) The regulation of intracellular calcium. Clin Endocrinology 5:Suppl 49s–59s

    Google Scholar 

  • Carafoli E, Patriarca P, Rossi CS (1961) A comparative study of the role of mitochondria and the sarcoplasmic reticulum in the uptake and release of Ca++ by the rat diaphragm. J Cell Physiol 74:17–30

    Google Scholar 

  • Carafoli E, Schwarzmann K, Roos I, Crompton M (1978) Protein in mitochondrial calcium transport. In: Blauer G, Sund H (eds) Transport by proteins. de Gruyter, Berlin, pp 171–186

    Google Scholar 

  • Carafoli E, Tiozzo R (1967) Time course of the distribution of in vivo administered 89Sr in rat liver subcellular fraction. Experientia 23:1017–1020

    Google Scholar 

  • Carafoli E, Tiozzo R, Lugli G, Crovetti F, Kratzing C (1974) The release of calcium from heart mitochondria by sodium. J Mol Cell Cardiol 6:361–371

    Google Scholar 

  • Carafoli E, Tiozzo R, Rossi CS, Lugli G (1972) Mitochondrial Ca2+ uptake and heart relaxation. In: Bolis L, Keynes RD, Wilbrandt W (eds) Role of membranes in secretory processes. North Holland, Amsterdam, pp 175–181

    Google Scholar 

  • Caroni P, Schwerzmann K, Carafoli E (1978) Separate pathways for Ca2+ uptake and release in liver mitochondria. FEBS Lett 96:339–342

    Google Scholar 

  • Carré M, Ayigbedé O, Miravet L, Rasmussen H (1974) The effect of prednisolone upon the metabolism and action of 25-hydroxy-and 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 71:2996–3000

    Google Scholar 

  • Carsten GE (1979) Calcium accumulation by human uterine microsomal preparations — effects of progesterone and oxytocin. Am J Obstet Gynecol 133:598–601

    Google Scholar 

  • Carvalho AP, Leo B (1967) Effects of ATP on the interaction of Ca++, Mg++ and K+ with fragmented sarcoplasmic reticulum isolated from rabbit skeletal muscle. J Gen Physiol 50:1327–1352

    Google Scholar 

  • Carvalho AP, Sanui H, Pace N (1963) Calcium and magnesium binding properties of cell membrane materials. J Cell Physiol 62:311–317

    Google Scholar 

  • Case RM, Clausen T (1973) The relationship between calcium exchange and enzyme secretion in the isolated rat pancreas. J Physiol (Lond) 235:75–102

    Google Scholar 

  • Casteels R, Goffin J, Raeymaekers L, Wuytack F (1973) Calcium pumping in smooth muscle cells of Taenia coli. J Physiol (Lond) 231:19P

    Google Scholar 

  • Casteels R, Kuriyama H (1965) Membrane potential and ionic current in pregnant and nonpregnant rat myometrium. J Physiol (Lond) 177:263–287

    Google Scholar 

  • Caulfield JB, Schrag PE (1964) Electron microscopic study of renal calcification. Am J Pathol 44:365–381

    Google Scholar 

  • Cha YN, Shin BC, Lee KS (1971) Active uptake of Ca++ and Ca++-activated Mg++ ATPase in red cell membrane fragments. J Gen Physiol 57:202–215

    Google Scholar 

  • Chabardès DM, Imbert M, Clique A, Montégut M, Morel F (1975) PTH sensitive adenyl cyclase activity in different segments of the rabbit nephron. Pfluegers Arch 354:229–239

    Google Scholar 

  • Chambaut AM, Leray-Pecker F, Feldmann G, Hanoune J (1974) Calcium binding properties and ATPase activities of rat plasma membranes. J Gen Physiol 64:104–126

    Google Scholar 

  • Chambers R (1940) The relation of the extraneous coats to the organization and permeability of cell membranes. Cold Spring Harbor Symp Quant Biol 8:144–153

    Google Scholar 

  • Chan TM, Blackmore PF, Steiner KE, Exton JH (1979) Effects of adrenalectomy on hormone action on hepatic glucose metabolism. Reciprocal change in α-and β-adrenergic activation of hepatic glycogen phosphorylase and calcium mobilization in adrenalectomized rats. J Biol Chem 254(7):2428–2433

    Google Scholar 

  • Chance B (1965) The energy-linked reaction of calcium with mitochondria. J Biol Chem 240:2729–2748

    Google Scholar 

  • Chandler DE, Williams JA (1979) Pancreatic acinar cells: effects of lanthanum ions on amylase release and calcium ion fluxes. J Physiol (Lond) 243:831–846

    Google Scholar 

  • Charlton RR, Wenner CE (1978) Calcium ion transport by intact Ehrlich ascites tumor cells. Role of respiratory substrates, Pi and temperature. Biochem J 170:537–544

    Google Scholar 

  • Chase LR, Aurbach GD (1970) The effect of parathyroid hormone on the concentration of adenosine 3′,5′-monophosphate in skeletal tissue in vitro. J Biol Chem 245:1520–1526

    Google Scholar 

  • Chase LR, Fedak SA, Aurbach GD (1969) Activation of skeletal adenyl cyclase by parathyroid hormone in vitro. Endocrinology 84:761–768

    Google Scholar 

  • Chausmer AB, Sehrman BS, Wallach S (1972) The effect of parathyroid hormone on hepatic cell transport of calcium. Endocrinology 90:663–672

    Google Scholar 

  • Chen JLJ, Babcock DF, Lardy HA (1978) Norepinephrine, vasopressin, glucagon and A23187 induce efflux of caclium from an exchangeable pool in isolated rat hepatocytes. Proc Natl Acad Sci USA 75:2234–2238

    Google Scholar 

  • Cheng SC, Chen SS (1976) Stimulation by cyclic nucleotides of calcium efflux in barnacle muscle fibers. Life Sci 16:1711

    Google Scholar 

  • Christoffersen GRJ, Simonsen L (1972) Ca2+ sensitive microelectrode — intracellular steady state measurement in nerve cell. Acta Physiol Scand 101:492–494

    Google Scholar 

  • Christophe JP, Frandsen EK, Conlon TP, Krishna G, Gardner JD (1976) Action of cholecystokinin, cholinergic agents, and A-23187 on accumulation of guanosine 3′-5′-monophosphate in dispersed guinea pig pancreatic acinar cells. J Biol Chem 251:4640–4645

    Google Scholar 

  • Chudapongse P (1976) Further studies on the effect of phosphoenol pyruvate on respiration dependent calcium transport by rat heart mitochondria. Biochim Biophys Acta 423:196–202

    Google Scholar 

  • Chudapongse P, Haugaard N (1973) The effect of phosphoenol pyruvate on calcium transport by mitochondria. Biochim Biophys Acta 307:599–606

    Google Scholar 

  • Cittadini A, Bossi D, Rosi G, Wolf F, Terranova T (1977) Calcium metabolism in Ehrlich ascites tumour cells. Biochim Biophys Acta 469:345–349

    Google Scholar 

  • Cittadini A, Scarpa A, Chance B (1971) Kinetic evidence for Ca2+ uptake by intact Ehrlich ascites tumor cells. FEBS Lett 18:98–102

    Google Scholar 

  • Cittadini A, Scarpa A, Chance B (1973) Calcium transport in intact Ehrlich ascites tumor cells. Biochim Biophys Acta 291:246–259

    Google Scholar 

  • Cittadini A, Van Rossum GDV (1978) Properties of the calcium-extruding mechanism of liver cells. J Physiol (Lond) 281:29–43

    Google Scholar 

  • Claret-Berthon B, Claret M, Mazet JL (1977) Fluxes and distribution of calcium in rat liver cells: kinetic analysis and identification of pools. J Physiol (Lond) 272:529–552

    Google Scholar 

  • Clausen T (1977) Calcium, glucose transport and insulin action. In: Semenza G, Carafoli E (eds) Biochemistry of membrane transport. Springer, Berlin Heidelberg New York, pp 481–499

    Google Scholar 

  • Clausen T, Martin BR (1977) The effect of insulin on the washout of [4 5Ca] calcium from the adipocytes and soleus muscle of the rat. Biochem J 164:251–255

    Google Scholar 

  • Clemente F, Meldolesi J (1975) Calcium and pancreatic secretonin — dynamics of subcellular pools in resting and stimulated acinar cells. Br J Pharmacol 55:369–379

    Google Scholar 

  • Cohen JJ, Barac-Nieto M (1973) Renal metabolism of substrates in relation to renal function. In: Orloff J, Berliner RW, Geiger SR (eds) Renal physiology. American Physiological Society, Washington (Handbook of physiology, Sec 8, pp 909–1001)

    Google Scholar 

  • Cohn DV, Bawdon R, Eller G (1967) The effect of parathyroid hormone in vivo on the accumulation of calcium and phosphate by kidney and kidney mitochondrial function. J Biol Chem 242:1253–1258

    Google Scholar 

  • Cook GMW, Laico MT, Eylar EH (1965) Biosynthesis of glycoproteins of the Ehrlich ascites carcinoma cell membranes. Proc Natl. Acad Sci USA 54:247–252

    Google Scholar 

  • Cooke WJ, Robinson JP (1971) Factors influencing calcium movements in rat brain slices. Am J Physiol 221:218–225

    Google Scholar 

  • Coraboeuf E, Beigelman PM, Breton D (1964) Potentiels électriques du foie de rat in situ. Effets de l'asphyxie. CR Acad Sci (D) (Paris) 25q:2300–2302

    Google Scholar 

  • Cosmos E (1964) Intracellular distribution of calcium in developing breast muscle of normal and dystrophic chicks. J Cell Biol 23:241–252

    Google Scholar 

  • Cosmos E, Harris EJ (1961) In vitro studies of the gain and exchange of calcium in frog skeletal muscle. J Gen Physiol 44:1121–1130

    Google Scholar 

  • Crompton M, Heid I (1978) The cycling of calcium, sodium and protons across the inner membrane of cardiac mitochondria. Eur J Biochem 91:599–608

    Google Scholar 

  • Crompton M, Sigel E, Salzmann M, Carafoli E (1967a) Kinetic study of the energy-linked influx of Ca2+ into heart mitochondria. Eur J Biochem 69:429–434

    Google Scholar 

  • Crompton M, Capano M, Carafoli E (1976b) The sodium induced efflux of calcium from heart mitochondria. A possible mechanism for the regulation of mitochondrial calcium. Eur J Biochem 69:453–462

    Google Scholar 

  • Crompton M, Künzi M, Carafoli E (1977) The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Evidence for a sodium calcium carrier. Eur J Biochem 79:549–558

    Google Scholar 

  • Crompton M, Hediger M, Carafoli E (1978a) The effect of inorganic phosphate on calcium influx into rat heart mitochondria. Biochem Biophys Res Commun 80:540–546

    Google Scholar 

  • Crompton M, Moser R, Lüdi H, Carafoli E (1978b) The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur J Biochem 82:25–31

    Google Scholar 

  • Crooks JR, Kyriakides CPM, Simkiss K (1976) Routes of calcium movements across the chick chorioallantois. Q J Exp Physiol 61:265–274

    Google Scholar 

  • Daniel EE, Janis RA (1975) Calcium regulation in the uterus. Pharmacol Ther (B) 1: 695–729

    Google Scholar 

  • Davis PW, Vincenzi FF (1971) Ca-ATPase activation and NaK-ATPase inhibition as a function of calcium concentration in human red cell membranes. Life Sci 10:401–406

    Google Scholar 

  • Dawkins MJR, Judah JD, Rees KR (1959) Factors influencing the survival of liver cells during autolysis. J Path Bact 77:257–275

    Google Scholar 

  • Dean PM, Matthews EK (1970a) Glucose induced electrical activity in pancreatic islet cells. J Physiol (Lond) 210:255–264

    Google Scholar 

  • Dean PM, Matthews EK (1970b) Electrical activity in pancreatic islet cells: effect of ions. J Physiol (Lond) 210:265–275

    Google Scholar 

  • Dean PM, Matthews EK, Sakamoto Y (1975) Pancreatic islet cells: effects of monosaccharides, glycolytic intermediates and metabolic inhibitors on membrane potential and electrical activity. J Physiol (Lond) 246:459–478

    Google Scholar 

  • Dedman JR, Brinkley BR, Means AR (1979) Regulation of microfilaments and microtubules by calcium and cyclic AMP. Adv Cyclic Nucl Res 11:131–174

    Google Scholar 

  • Deffner GGJ (1961) The dialysable free organic constituents of squid blood: a comparison with nerve axoplasm. Biochim Biophys Acta 47:378–388

    Google Scholar 

  • DeMeis L (1969a) Activation Ca2+ uptake by acetylphosphate in muscle microsomes. Biochim Biophys Acta 172:343–344

    Google Scholar 

  • DeMeis L (1969b) Ca2+ uptake and acetylphosphate of skeletal muscle microsomes. Inhibition by Na+, K+, Li+ and adenosine triphosphate. J Biol Chem 244:3733–3739

    Google Scholar 

  • DeMeis L (1971) Allosteric inhibition by alkali ions of the Ca2+ uptake and adenosine triphosphatase activity of skeletal muscle microsomes. J Biol Chem 246:4764–4773

    Google Scholar 

  • DeMeis L, Hasselbach W (1971) Acetylphosphate as substrate for Ca2+ uptake in skeletal muscle microsomes. Inhibition by alkali ions. J Biol Chem 246:4759–4763

    Google Scholar 

  • DeMeis L, Rubin-Attschul BM, Tillack TW (1970) Comparative data of Ca2+ transport in brain and skeletal muscle microsomes. J Biol Chem 245:1883–1889

    Google Scholar 

  • Deschodt-Lanckman M, Robberecht P, De Neef P, Lammens M, Christophe J (1976) In vitro action of bombesin and bombesin-like peptides on amylase secretion, calcium efflux, and adenylate cyclase activity in the rat pancreas. J Clin Invest 58:891–898

    Google Scholar 

  • Deshmukh K, Kline WG, Sawyer BD (1977) Effect of calcitonin and parathyroid hormone on the metabolism of chondrocytes in culture. Biochim Biophys Acta 499:28–35

    Google Scholar 

  • Deth RC (1978) Effect of lanthanum and reduced temperature on 45Ca efflux from rabbit aorta. Am J Physiol 234:C139–C145

    Google Scholar 

  • Deth R, Van Breemen C (1977) Agonist induced release of intracellular Ca2+ in the rabbit aorta. J Membr Biol 30:363–380

    Google Scholar 

  • DeWulf H, Keppens S (1976) Is calcium 2nd messenger in liver for cyclic AMP independent glycogenolytic hormones? Arch Int Physiol Biochim 84:159–160

    Google Scholar 

  • DiPolo R (1973a) Calcium efflux from internally dialyzed squid giant axons. J Gen Physiol 62:575–589

    Google Scholar 

  • DiPolo R (1973b) Sodium dependent calcium influx in dialyzed barnacle muscle fiber. Biochim Biophys Acta 298:279–283

    Google Scholar 

  • DiPolo R (1974) Effect of ATP on the calcium efflux in dialzyed squid giant axon. J Gen Physiol 64:503–517

    Google Scholar 

  • DiPolo R (1976) The influence of nucleotides on calcium fluxes. Fed Proc 35:2579–2582

    Google Scholar 

  • DiPolo R (1977) Characterization of the ATP-dependent calcium efflux in dialyzed squid giant axons. J Gen Physiol 69:795–813

    Google Scholar 

  • DiPolo R (1979) Calcium influx in internally dialyzed squid giant axons. J Gen Physiol 73:91–113

    Google Scholar 

  • DiPolo R, Caputo C (1977) The effect of ATP on calcium efflux in dialyzed barnacle muscle fibres. Biochim Biophys Acta 470:389–394

    Google Scholar 

  • DiPolo R, Requena J, Brinley FJ Jr, Mullins LJ, Scarpa A, Tiffert T (1976) Ionized calcium concentration in squid axons. J Gen Physiol 67:433–467

    Google Scholar 

  • Dorman DM, Barritt GJ, Bygrave FF (1975) Stimulation of hepatic mitochondrial calcium transport by elevated plasma insulin concentration. Biochem J 150:389–395

    Google Scholar 

  • Douglas WW, Kanno T, Sampson SR (1967a) Effects of acetylcholine and other medullary secretagogues and antagonists on the membrane potential of adrenal chromaffin cells: an analysis employing technique of tissue culture. J Physiol (Lond) 188:107–120

    Google Scholar 

  • Douglas WW, Kanno T, Sampson SR (1976b) Influence of the ionic environment on the membrane potential of adrenal chromaffin cells and on the deploarizing effect of acetylcholine. J Physiol (Lond) 191:107–121

    Google Scholar 

  • Drahota Z, Carafoli E, Rossi CS, Gamble RL, Lehninger AL (1965) The steady state maintenance of accumulated Ca++ in rat liver mitochondria. J Biol Chem 240:2712–2720

    Google Scholar 

  • Droogmans G, Casteels R (1979) Sodium and calcium interactions in vascular smooth muscle cells of the rabbit ear artery. J Gen Physiol 74:57–70

    Google Scholar 

  • Duffy MJ, Schwarz V (1973) Calcium binding to erythrocyte membrane. Biochim Biophys Acta 330:294–301

    Google Scholar 

  • Dunnett J, Nayler WG (1979) Effect of pH on calcium accumulation and release by isolated fragments of cardiac and skeletal muscle sarcoplasmic reticulum. Arch Biochem Biophys 198:434–438

    Google Scholar 

  • Dziak R (1978) Effects of vitamin D3 metabolites on bone cell calcium transport. Calcif Tissue Res 26:65–70

    Google Scholar 

  • Dziak R, Brand JS (1974a) Calcium transport in isolated bone cells. I. Bone cell isolation procedure. J Cell Physiol 84:75–74

    Google Scholar 

  • Dziak R, Brand JS (1974b) Calcium transport in isolated bone cells. II. Calcium transport studies. J Cell Physiol 84:85–96

    Google Scholar 

  • Dziak R, Hausmann E, Chang YW (1979) Effects of lipopolysaccharides and prostaglandins on rat bone cell calcium and cyclic AMP. Arch Oral Biol 24:347–354

    Google Scholar 

  • Dziak R, Stern PH (1975) Calcium transport in isolated bone cells. III. Effects of parathyroid hormone and cyclic 3′5′ AMP. Endocrinology 97:1281–1287

    Google Scholar 

  • Ebashi S (1976) Excitation-contraction coupling. Ann Rev Physiol 38:293–313

    Google Scholar 

  • Eilam Y, Szydel N, Harell A (1980) Effect of calcitonin on transport and intracellular distribution of exchangeable Ca2+ in primary culture of bone cells. Mol Cell Endocrinol 18:215–225

    Google Scholar 

  • Elder JA, Lehninger AL (1973a) Respiration dependent transport of carbon dioxide into rat liver mitochondria. Biochemistry 12:976–982

    Google Scholar 

  • Elder JA, Lehninger AL (1973b) Energy linked uptake of Ca2+ supported by carbon dioxide: inhibition by diamox. In: Azzone GF, Ernster L, Papa S, Quagliariello E, Siliprandi N (eds) Mechanisms in bioenergetics. Academic Press, New York, pp 513–526

    Google Scholar 

  • Entman ML, Levey GS, Epstein SE (1969) Mechanism of action of epinephrine and glucagon on the canine heart. Evidence for increase in sarcotubular calcium stores mediated by cyclic 3′5′ AMP. Circ Res 25:429–438

    Google Scholar 

  • Eroglu L, Keen P (1977) Active uptake of 45Ca by a microsomal fraction prepared from rat dorsal roots. J Neurochem 29:905–909

    Google Scholar 

  • Ewe K (1972) Calcium transport in rat small intestine in vitro and in vivo. Arch Pharmacol 273:352–365

    Google Scholar 

  • Exton JH (1980) Mechanisms involved in α-adrenergic phenomena: role of calcium ions in actions of catecholamines in liver and other tissues. Am J Physiol 238:E3–E12

    Google Scholar 

  • Exton JH, Park CR (1972) Interaction of insulin and glucagon in the control of liver metabolism. In: Greep RO, Astwood EB (eds) Endocrinology, endocrine pancreas. American Physiological Society, Washington, D.C. (Handbook of physiology, vol I/7, pp 437–455)

    Google Scholar 

  • Exton JH, Robinson GA, Sutherland EW (1972) Glucagon and cyclic AMP. In: Endocrinology, endocrine pancreas. American Physiological Society, Washington, D.C. (Handbook of physiology, vol I/7, pp 425–436)

    Google Scholar 

  • Fain JN, Berridge MJ (1979) Relationship between hormonal activation of phosphatidylinositol hydrolysis, fluid secretion and calcium flux in the blowfly salivary gland. Biochem J 178:45–58

    Google Scholar 

  • Fanburg BL (1968) Calcium transport by skeletal muscle sarcoplasmic reticulum in the hypothyroid rat. J Clin Invest 47:2499–2506

    Google Scholar 

  • Farber JL, El-Mofty SK, Schanne FAX, Aleo JJ Jr, Serroni A (1977) Intracellular calcium homeostasis in galactosamine-intoxicated rat liver cells. Active sequestration of calcium by microsomes and mitochondria. Arch Biochem Biophys 178:617–624

    Google Scholar 

  • Feher JJ, Wasserman RH (1979) Intestinal calcium-binding protein and calcium absorption in cortisol-treated chicks: effects of vitamin D3 and 1,25-dihydroxyvitamin D3. Endocrinology 104:547–551

    Google Scholar 

  • Ferreira HG, Lew VL (1976) Use of ionophore A23187 to measure cytoplasmic Ca buffering and activation of the Ca pump by internal Ca. Nature 259:47–49

    Google Scholar 

  • Fiskum G, Lehninger AL (1979) Regulated release of calcium from respiring mitochondria by Ca2+/2H+ antiport. J Biol Chem 254, 6236–6239

    Google Scholar 

  • Foden S, Randle PJ (1978) Calcium metabolism in rat hepatocytes. Biochem J 170:615–625

    Google Scholar 

  • Foreman JC, Hallett MB, Mongar JL (1977) The relationship between histamine secretion and 45calcium uptake by mast cells. J Physiol (Lond) 271:193–214

    Google Scholar 

  • Frankel BJ, Imagawa WT, O'Connor MDL, Lundquist I, Kromhout JA, Fanska RE (1978) Glucose stimulated 45calcium efflux from isolated rat pancreatic islets. J Clin Invest 62:525–531

    Google Scholar 

  • Frankenhauser B, Hodgkin AL (1956) The after effects of impulses in the giant nerve fibres of Loligo. J Physiol (Lond) 131:341–376

    Google Scholar 

  • Freedman RA, Weiser MM, Isselbacher KJ (1977) Calcium translocation by Golgi and lateral-basal membrane vesicles from rat intestine: decrease in vit-D-deficient rats. Proc Natl Acad Sci USA 74:3612–3616

    Google Scholar 

  • Freeman DJ, Daniel EE (1973) Calcium movements in vascular smooth muscle and its detection using lanthanum as a tool. Can J Physiol Pharmacol 51:900–913

    Google Scholar 

  • Friedmann N (1972) Effects of glucagon and cyclic AMP on ion fluxes in the perfused liver. Biochim Biophys Acta 274:214–225

    Google Scholar 

  • Friedmann N, Divakaran P, Kirkland J, Kimura S, Wood J (1979) Effects of the calcium ionophore A23187 on liver metabolism. J Pharmacol Exp Ther 211:127–132

    Google Scholar 

  • Friedmann N, Park CR (1968) Early effect of 3′5′ AMP on the fluxes of Ca and potassium in the perfused liver of normal and adrenalectomized rats. Proc Natl Acad Sci USA 61:504–508

    Google Scholar 

  • Friedmann N, Rasmussen N (1970) Relationship between Ca2+ movement and gluconeogenesis in the perfused liver. Biochim Biophys Acta 222:41–52

    Google Scholar 

  • Fuchs R, Peterlik M (1979) Vitamin D-induced transepithelial phosphate and calcium transport by chick jejunum: effect of microfilamentous and microtubular inhibitors. FEBS Lett 100:357–359

    Google Scholar 

  • Gainer H (1968) The role of calcium in excitation-contraction coupling. J Gen Physiol 52:88–110

    Google Scholar 

  • Galo MG, Bloj B, Farias RN (1975) Kinetic changes of erythrocyte (Mg2+ + Ca2+)-adenosine triphosphatase of rats fed different fat-supplemented diets. J Biol Chem 250:6204–6207

    Google Scholar 

  • Gardner JD, Conlon TP, Klaeveman HL, Adams TO, Ondetti MA (1975) Action of cholecystokinin and cholinergic agents on calcium transport in isolated pancreatic acinar cells. J Clin Invest 56:366–375

    Google Scholar 

  • Gardner JD, Hahne WF (1977) Calcium transport in dispersed acinar cells from rat pancreas. Biochim Biophys Acta 471:466–476

    Google Scholar 

  • Garrison JC, Borland MK, Florio VA, Twible DA (1979) The role of calcium ions as a mediator of the effects of angiotensin II. Catecholamines and vasopressin on the phosphorylation and activity of enzymes in isolated hepatocytes. J Biol Chem 254:7147–7156

    Google Scholar 

  • Gasic G, Gasic T (1962) Removal and regeneration of the cell coating in tumour cells. Nature 196:170

    Google Scholar 

  • Geduldig D, Junge D (1968) Sodium and calcium components of action potentials in the Aplysia giant neurone. J Physiol (Lond) 199:347–365

    Google Scholar 

  • Gerrard JM, Townsend D, Stoddard S, Witkop CJ, White JG (1977) The influence of prostaglandin G2 on platelet ultrastructure and platelet secretion. Am J Pathol 86(1):99–115

    Google Scholar 

  • Gerrard JM, Kindom SE, Peterson DA, Peller J, Krautz KE, White J (1979) Lysophosphatidic acid's influence on platelets aggregation and intracellular calcium flux. Am J Pathol 96:423–438

    Google Scholar 

  • Ghijsen WEJM, Van Os CH (1979) Ca-stimulated ATPase in brush border and basolateral membranes of rat duodenum with high affinity sites for Ca ions. Nature 279:802–803

    Google Scholar 

  • Giebisch G (1958) Electrical potential measurements on single nephrons of Necturus. J Cell Comp Physiol 51:221–239

    Google Scholar 

  • Giebisch G (1961) Measurements of electrical potential differences on single nephrons of the perfused Necturus kidney. J Gen Physiol 44:659–678

    Google Scholar 

  • Gilbert DL, Fenn WD (1957) Calcium equilibrium in muscle. J Gen Physiol 40:393–408

    Google Scholar 

  • Giles W, Noble SJ (1976) Changes in membrane currents in bullfrog atrium produced by acetylcholine. J Physiol (Lond) 261:103–123

    Google Scholar 

  • Girardier L, Seydoux J, Clausen T (1968) Membrane potential of brown adipose tissue. A suggested mechanism for the regulation of thermogenesis. J Gen Physiol 52:925–940

    Google Scholar 

  • Glitsch HG, Reuter H, Scholz H (1970) The effect of the internal sodium concentration on calcium fluxes in isolated guinea-pig auricles. J Physiol (Lond) 209:25–43

    Google Scholar 

  • Gmaj P, Murer H, Kinne R (1979) Calcium ion transport across plasma membranes isolated from rat kidney cortex. Biochem J 178:549–557

    Google Scholar 

  • Godfraind T, Kaba A (1972) The role of calcium in the action of drugs on vascular smooth muscle. Arch Int Pharm Therap 196 (Suppl):35–49

    Google Scholar 

  • Gomez-Puyou A, Tuena de Gomez-Puyou M, Becker G, Lehninger AL (1972) An insoluble Ca2+-binding factor from rat liver mitochondria. Biochem Biophys Res Commun 47:814–819

    Google Scholar 

  • Gopinath RM, Vincenzi FF (1977) Phosphodiesterase protein activator mimics red blood cell cytoplasmic activator of (Ca2+ − Mg2+) ATPase. Biochem Biophys Res Commun 77:1203–1209

    Google Scholar 

  • Govier WC, Holland WC (1964) Effect of ouabain on tissue calcium and calcium exchange in pacemaker of turtle heart. Am J Physiol 207:195–198

    Google Scholar 

  • Greenawalt JW, Rossi CS, Lehninger AL (1964) Effect of active accumulation of calcium and phosphate ions on the structure of rat liver mitochondria. J Cell Biol 23:21–38

    Google Scholar 

  • Greenway DC, Himms-Hagen J (1978) Increased calcium uptake by muscle mitochondria of cold acclimated rats. Am J Physiol 234:C7–C13

    Google Scholar 

  • Grinstein S, Erlij D (1976) Action of insulin and cell calcium: effect of ionophore A23187. J Membr Biol 29:313–328

    Google Scholar 

  • Griswold RL, Pace N (1956) The intracellular distribution of metal ions in rat liver. Exptl Cell Res 11:362–367

    Google Scholar 

  • Grosse D, Lüllman H (1972) Tissue Ca content of intestinal smooth muscles and the Ca++ concentration of the incubation medium. Experientia 28:412–413

    Google Scholar 

  • Guerrero-Munoz F, Cerreta KW, Guerrero ML, Way EL (1979a) Effect of morphine on synaptosomal Ca++ uptake. J Pharmacol Exper Therap 209:132–135

    Google Scholar 

  • Guerrero-Munoz F, De Lourdes Guerrero M, Way EL (1979b) Effect of morphine on calcium uptake by lysed synaptosomes. J Pharmacol Exp Ther 211:370–374

    Google Scholar 

  • Guerrero-Munoz F, DeLourdes Guerrero M, Way EL, Li CH (1979c) Effect of β-endorphin on calcium uptake in the brain. Science 206:89–90

    Google Scholar 

  • Gunter TE, Puskin JS (1975) The use of electron paramagnetic resonance in studies of free and bound divalent cation: the measurement of membrane potential in mitochondria. Ann NY Acad Sci 264:112–122

    Google Scholar 

  • Gylfe E, Buitrago A, Berggren PO, Hammarström K, Hellman B (1978) Glucose inhibition of 45Ca efflux from pancreatic islets. Am J Physiol 235:E191–E196

    Google Scholar 

  • Hagiwara S (1973) Ca spike. Adv Biophys 4:71–102

    Google Scholar 

  • Hagiwara S, Chichibu S, Naka K (1964) The effects of various ions on resting and spike potentials of barnacles. J Gen Physiol 48:163–179

    Google Scholar 

  • Hagiwara S, Naka K (1964) The initiation of spike potential in barnacle muscle fibers under low intracellular Ca++. J Gen Physiol 48:141–162

    Google Scholar 

  • Hagiwara S, Nakajima S (1966) Effects of the intracellular Ca ion concentration upon excitability of the muscle fiber membrane of a barnacle. J Gen Physiol 49:807–818

    Google Scholar 

  • Hahn TJ, Halstead LR (1979) Cortisol enhancement of PTH-stimulated cyclic AMP accumulation in cultured fetal rat long bone rudiments. Calcif Tissue Int 29:173–175

    Google Scholar 

  • Hakim A (1973) Effect of human calcitonin on the sarcoplasmic reticulum of the human heart. Naturwissenschaften 60:53

    Google Scholar 

  • Hales CN, Campbell AK, Luzio JP, Siddle K (1977) Calcium as a mediator of hormone action. Biochem Soc Trans 5:866–871

    Google Scholar 

  • Hamaguchi Y, Mabuchi I (1978) Measurement of intracellular free calcium concentration in the starfish egg by means of the microinjection of aequorin. Cell Struct Func 3:259–264

    Google Scholar 

  • Hanahan DJ, Taverna RD, Flynn DD, Echolm JE (1978) The interaction of Ca2+/Mg2+ ATPase activator protein and Ca2+ with human erythrocyte membranes. Biochem Biophys Res Commun 84:1009–1017

    Google Scholar 

  • Harada E, Laychock SG, Rubin RP (1978) Parathyroid hormone induced stimulation of calcium uptake by renal microsomes. Biochem Biophys Res Commun 84:396–402

    Google Scholar 

  • Harell A, Binderman I, Gues M (1976) Tissue culture of bone cells: mineral transport, calcification and hormonal effects. Isr J Med Sci 12:115–123

    Google Scholar 

  • Harell A, Binderman I, Rodan GA (1973) The effect of calcium concentration on calcium uptake by bone cells treated with thyrocalcitonin (TCT) hormone. Endocrinology 92:550–555

    Google Scholar 

  • Harigaya S, Schwartz A (1969) Rate of calcium binding and uptake in normal animal and failing human cardiac muscle. Membrane vesicles (relaxing system) and mitochondria. Circ Res 25:781–794

    Google Scholar 

  • Harris EJ (1977) The uptake and release of calcium by heart mitochondria. Biochem J 168:447–456

    Google Scholar 

  • Harris EJ (1979) Modulation of Ca2+ efflux from heart mitochondria. Biochem J 178:673–680

    Google Scholar 

  • Harris EJ, Al-Shaikhaly M, Baum H (1979) Stimulation of mitochondrial calcium ion efflux by thiolspecific reagents and by thyroxine. The relationship to adenosine diphosphate retention and to mitochondrial permeability. Biochem J 182:455–464

    Google Scholar 

  • Harris RH, Ramwell PW, Gilmer PJ (1979) Cellular mechanisms of prostaglandin action. Ann Rev Physiol 41:653–658

    Google Scholar 

  • Haussler MR, Nagode LA, Rasmussen H (1970) Induction of intestinal brush border alkaline phosphatase by vitamin D and identity with Ca-ATPase. Nature 228:1199–1201

    Google Scholar 

  • Hayasaki-Kumura N, Takahashi K (1979) Studies on action of somatostatin on growth hormone release in relation to calcium and cyclic AMP. Proc Soc Exp Biol Med 161:312–318

    Google Scholar 

  • Hazelton BJ, Tupper JT (1979) Calcium transport and exchange in mouse 3T3 and SU40-3T3 cells. J Cell Biol 81:538–542

    Google Scholar 

  • Heaton GM, Nicholls DG (1976) The calcium conductance of the inner membrane of rat liver mitochondria and the determination of the calcium electrochemical gradient. Biochem J 156:635–646

    Google Scholar 

  • Heersche JNM, Marcus R, Aurbach GD (1974) Calcitonin and the formation of 3′,5′-AMP in bone and kidney. Endocrinology 94:241–247

    Google Scholar 

  • Heilbrunn L (1943) An outline of general physiology. Saunders, Philadelphia

    Google Scholar 

  • Heilbrunn LV, Wiercinski FJ (1947) The action of various cations on muscle protoplasm. J Cell Physiol 29:15–32

    Google Scholar 

  • Heisler S, Grondin G (1973) Effect of lanthanum of 45Ca flux and secretion of protein from rat exocrine pancreas. Life Sci 13:783–794

    Google Scholar 

  • Hellman B, Anderson T (1978) Calcium and pancreatic β-cell function. IV. Evidence that glucose and phosphate stimulate Ca45 incorporation into different intracellular pools (BBA 28582). Biochim Biophys Acta 541:483–491

    Google Scholar 

  • Hellman B, Sehlin J, Täljedal IB (1971) Calcium uptake by pancreatic β-cells as measured with the aid of 45Ca and mannitol-3H. Am J Physiol 221:1795–1801

    Google Scholar 

  • Hellman B, Sehlin J, Täljedal IB (1976a) Effects of glucose on 45Ca++ uptake by pancreatic islets as studied with the lanthanum method. J Physiol (Lond) 254:639–656

    Google Scholar 

  • Hellman B, Sehlin J, Täljedal IB (1976b) Calcium and secretion: distinction between two pools of glucose-sensitive calcium in pancreatic islets. Science 194:1421–1423

    Google Scholar 

  • Hems DA, Whitton PD (1980) Control of hepatic glycogenolysis. Physiol Rev 60:1–50

    Google Scholar 

  • Herchuelz A, Couturier E, Malaisse WJ (1980) Regulation of calcium fluxes in pancreatic islets: glucose-induced calcium-calcium exchange. Am J Physiol 238:E96–E103

    Google Scholar 

  • Herchuelz A, Delcroix C, Malaisse WJ (1979) Regulation of calcium fluxes in pancreatic islets. Quantification of calcium movements. Biochem Med 22:156–164

    Google Scholar 

  • Herchuelz A, Malaisse WJ (1980) Regulation of calcium fluxes in pancreatic islets: two calcium movements' dissociated response to glucose. Am J Physiol 238:E87–E95

    Google Scholar 

  • Herrman-Erlee MPM, v.d. Meer JM (1974) The effect of dibutyryl cyclic AMP, amino-phylline, propranolol on PTE-induced bone resorption in vitro. Endocrinology 94:424–434

    Google Scholar 

  • Hicks MJ, Shigekawa M, Katz AM (1979) Mechanism by which cyclic adenosine 3′,5′ monophosphate-dependent protein kinase stimulates calcium transport in cardiac sarcoplasmic reticulum. Circ Res 44:384–391

    Google Scholar 

  • Hinds TR, Larsen FL, Vincenzi FF (1978) Plasma membrane Ca2+ transport: stimulation by soluble proteins. Biochem Biophys Res Commun 81:455–461

    Google Scholar 

  • Hines RN, Wenner CE (1977) The role of Pi in glycolytic inhibition of calcium ion uptake by ELD ascites tumor cells. Biochim Biophys Acta 465:391–399

    Google Scholar 

  • Hinke JAM (1961) The measurement of sodium and potassium activities in the squid axon by means of cation selective glass microelectrodes. J Physiol (Lond) 156:314–335

    Google Scholar 

  • Hinnen R, Miyamoto H, Racker E (1979) Ca2+ translocation in Ehrlich ascites tumor cells. J Membr Biol 49:309–324

    Google Scholar 

  • Hodgkin AL, Keynes RD (1957) Movements of labelled calcium in squid giant axons. J. Physiol (Lond) 138:253–281

    Google Scholar 

  • Hodgson BJ, Kidwai AM, Daniel EE (1972) Uptake of lanthanum by smooth muscle. Can J Physiol Pharmacol 50:730–733

    Google Scholar 

  • Höfer M, Kleinzeller A (1963a) Calcium transport in slices of rabbit kidney cortex: the uptake and distribution of calcium. Physiol Bohemoslov 12:405–416

    Google Scholar 

  • Höfer M, Kleinzeller A (1963b) Calcium transport in slices of rabbit kidney cortex: the steady state compartmentalization of Ca and rate constants of 4 5Ca efflux. Physiol Bohemoslov 12:417–424

    Google Scholar 

  • Höfer M, Kleinzeller A (1963c) Calcium transport in slices of rabbit kidney cortex: the loss of calcium from Ca-enriched slices. Physiol Bohemoslov 12:425–434

    Google Scholar 

  • Hogeboom GH, Schneider WC, Striebich MJ (1953) Localization and integration of cellular function. Cancer Res 13:617–632

    Google Scholar 

  • Hohman W, Schraer H (1966) The intracellular distribution of calcium in the mucosa of the avian shell gland. J Cell Biol 30:317–331

    Google Scholar 

  • Hope-Gill H, Kissebah A, Tulloch B, Clarke P, Uydelingum N, Fraser TR (1975) The effects of insulin on adipocyte calcium fluxes and the interaction with the effects of dibutyryl cyclic AMP and adrenaline. Horm Metab Res 7:195–196

    Google Scholar 

  • Hope-Gill HF, Kissebah AH, Clarke P, Vydelingum N, Tulloch B, Fraser TR (1976) Effects of insulin and procaine hydrochloride on glycogen synthetase activation and adipocyte calcium flux — evidence for a role of calcium in insulin activation of glycogen synthetase. Horm Metab Res 8:184–190

    Google Scholar 

  • Howell SL, Mantague W, Tyhurst M (1975) Calcium distribution in islets of Langerhans: a study of calcium concentrations and calcium accumulation in 3 cell organelles. J Cell Sci 19:395–409

    Google Scholar 

  • Howell SL, Tyhurst M (1976) 4 5Calcium localization in islets of Langerhans, a study by electron-microscopy autoradiography. J Cell Sci 21:415–422

    Google Scholar 

  • Hughes BP, Barritt GJ (1978) Effects of glucagon and N6, O2 dibutyryladenosine 3′:5′-cyclic monophosphate on calcium transport in isolated rat liver mitochondria. Biochem J 176:295–304

    Google Scholar 

  • Hughes BP, Barritt GJ (1979) Interaction between glucocorticoids and glucagon in the hormonal modification of calcium retention by isolated rat liver mitochondria. Biochem J 180:291–295

    Google Scholar 

  • Hutson SM (1977) Steady state kinetics of energy-dependent Ca2+ uptake in rat liver mitochondria. J Biol Chem 252:4539–4545

    Google Scholar 

  • Hutson SM, Pfeiffer DR, Lardy HA (1976) Effect of cations and anions on the steady state kinetics of energy-dependent Ca2+ transport in rat liver mitochondria. J Biol Chem 251:5251–5258

    Google Scholar 

  • Huxley AF, Stämpfli R (1951) Direct determination of membrane resting potential and action potential in single myelinated nerve fibers. J Physiol (Lond) 112:476–495

    Google Scholar 

  • Huxtable R, Bressler R (1974) The effect of deuterium ion concentration on the properties of sarcoplasmic reticulum. J Membr Biol 17:189–197

    Google Scholar 

  • Ilundain A, Naftalin RJ (1979) Role of Ca2+-dependent regulator protein in intestinal secretion. Nature 279:446–448

    Google Scholar 

  • Isaacson A (1969) Caffein-induced contracture and related calcium movements of muscle in hypertonic media. Experientia 25:1263–1265

    Google Scholar 

  • Isaacson A, Sandow A (1967) Quinine and caffeine effects on 4 5Ca movements in frog sartorius muscle. J Gen Physiol 50:2109–2128

    Google Scholar 

  • Ishibashi F, Sato T, Onari K, Kawate R (1979) Effect of somatostatin on glucose-induced Ca4 5 uptake in the pancreatic islets. Endocrinol Jpn 26:585–590

    Google Scholar 

  • Izzard S, Tedeschi H (1973) Characterization of orthophosphate induced active cation transport in isolated liver mitochondria. Arch Biochim Biophys 154:527–539

    Google Scholar 

  • Jacobus WE, Tiozzo R, Lugli G, Lehninger AL, Carafoli E (1975) Aspects of energy-linked Ca2+ accumulation by rat-heart mitochondria. J Biol Chem 250:7863–7870

    Google Scholar 

  • Janda S (1969) Mechanism of calcium transport in kidney cortex slices. Physiol Bohemoslov 18:413–423

    Google Scholar 

  • Jarrett HW, Penniston JT (1977) Partial purification of the (Ca+2 + Mg+2) ATPase activator from human erythrocytes: its similarity to the activator of 3′:5′ cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun 77:1210–1216

    Google Scholar 

  • Jay AWL, Burton AC (1969) Direct measurement of potential difference across the human red blood cell membrane. Biophys J 9:115–121

    Google Scholar 

  • Johansson P, Josefsson J (1978) Evidence for a dual effect of intracellular calcium ion on pinocytosis. Acta Physiol Scand 102:71A–72A

    Google Scholar 

  • Judah JD, Ahmed K (1963) Role of phosphoproteins in ion transport: interactions of sodium with calcium and potassium in liver slices. Biochim Biophys Acta 71:34–44

    Google Scholar 

  • Judah JD, Ahmed K (1964) The biochemistry of sodium transport. Biol Rev 39:160–193

    Google Scholar 

  • Jundt H, Porzig H, Reuter H, Stucki JW (1975) The effect of substances releasing intracellular calcium ions on sodium-dependent calcium efflux from guinea pig auricles. J Physiol (Lond) 246:229–253

    Google Scholar 

  • Jundt H, Reuter H (1977) Is sodium-activated calcium efflux from mammalian cardiac muscle dependent on metabolic energy. J Physiol (Lond) 266:78P–79P

    Google Scholar 

  • Juzu HA, Holdsworth ES (1980) New evidence for the role of cyclic AMP in the release of mitochondrial calcium. J Membr Biol 52:185–189

    Google Scholar 

  • Kakuta S, Suda T, Sasaki S, Kimura N, Nagata N (1975) Effects of parathyroid hormone on the accumulation of cyclic AMP in bone of vitamin D deficient rats. Endocrinology 97:1288–1293

    Google Scholar 

  • Kalix P (1969) Na-activated calcium efflux in rabbit vagus nerve fibres. Experientia 25:1293–1294

    Google Scholar 

  • Kalix P (1971) Uptake and release of calcium in rabbit vagus nerve. Pfluegers Arch 326:1–14

    Google Scholar 

  • Kanagasuntheram P, Randle P (1976) Calcium metabolism and amylase release in rat parotid acinar cells. Biochem J 160:547–564

    Google Scholar 

  • Käser-Glanzmann R, Jakabova M, George JN, Lüscher EF (1977) Stimulation of calcium uptake in platelet membrane vesicles by adenosine 3′5′-cyclic monophosphate and protein kinase. Biochim Biophys Acta 466:429–440

    Google Scholar 

  • Kass RS, Tsien RW (1975) Multiple effects of calcium antagonists on plateau currents in cardiac Purkinje fibers. J Gen Physiol 66:169–192

    Google Scholar 

  • Katz AM, Repke DL, Fudyma G, Shigekawa M (1977) Control of calcium efflux from sarcoplasmic reticulum vesicles by external calcium. J Biol Chem 252:4210–4214

    Google Scholar 

  • Katz B, Miledi R (1967) A study of synaptic transmission in the absence of nerve impulses. J Physiol (Lond) 192:407–436

    Google Scholar 

  • Katz B, Miledi R (1969) Tetrodotoxin-resistant electric activity in presynaptic terminals. J Physiol (Lond) 203:459–487

    Google Scholar 

  • Katz S, Remtulla MA (1978) Phosphodiesterase protein activator stimulates calcium transport in cardiac microsomal preparations enriched in sarcoplasmic reticulum. Biochem Biophys Res Commun 83:1373–1379

    Google Scholar 

  • Katzung BG, Reuter H, Portzig H (1973) Lanthanum inhibits Ca inward current but not Na-Ca exchange in cardiac muscle. Experientia 29:1073–1075

    Google Scholar 

  • Keppens S, Vendenheede JR, DeWulf H (1977) On the role of calcium as second messenger in liver for the hormonally induced activation of glycogen phosphorylase. Biochim Biophys Acta 496:448–457

    Google Scholar 

  • Khan AR (1979) Effects of diethylstilbestrol on single fibers of frog skeletal muscle. Acta Physiol Scand 106:69–74

    Google Scholar 

  • Kahn A, Brachet E (1979) The permeability coefficient of albumin of the isolated rat mesentery — a modification by some mediators of inflammation, cyclic AMP and calcium. Biochim Biophys Acta 588:219–231

    Google Scholar 

  • Kikuchi M, Wollheim CB, Cuendet GS, Renold AE, Sharp WG (1978) Studies on the dual effects of glucose on 4 5Ca efflux from isolated rat islets. Endocrinology 102:1339–1349

    Google Scholar 

  • Kikuchi M, Wollheim CB, Seigel EG, Renold AE, Sharp GWG (1979) Biphasic insulin release in rat islets of Langerhans and the role of intracellular Ca++ stores. Endocrinology 105:1013–1019

    Google Scholar 

  • Kimberg DV, Baerg RD, Gershon E, Graudusius RT (1971) Effect of cortisone treatment on the active transport of calcium by the small intestine. J Clin Invest 50:1309–1321

    Google Scholar 

  • Kimura S, Rasmussen H (1977) Adrenal glucorticoids, adenine nucleotide translocation, and mitochondrial calcium accumulation. J Biol Chem 252:1217–1225

    Google Scholar 

  • Kimura T, Chu JW, Mukai R, Ishizuka I, Ymamkawa T (1972) Some properties of a glycoprotein isolated from adrenal cortex mitochondria. Biochem Biophys Res Commun 49:1678–1683

    Google Scholar 

  • Kinne-Saffran E, Kinne R (1974) Localization of a calcium-stimulated ATPase in the basal-lateral plasma membranes of the proximal tubule of rat kidney cortex. J Membr Biol 17:263–274

    Google Scholar 

  • Kirchberger MA, Tada M, Repke DL, Katz AM (1972) Cyclic adenosine 3′5′-monophosphate-dependent protein kinase stimulation of calcium uptake by canine cardiac microsomes. J Mol Cell Cardiol 4:673–680

    Google Scholar 

  • Kissebah AH, Clarke P, Vydelingum N, Hope-Gill H, Tulloch B, Fraser TR (1975) The role of calcium in insulin action. III. Calcium distribution in fat cells; its kinetics and the effects of adrenaline, insulin and procaine-HCl. Eur J Clin Invest 5:339–349

    Google Scholar 

  • Klaus W, Krebs R (1974) Analysis of the calcium compartments in guinea pig hearts under control conditions and under the influence of ouabain. Arch Pharmacol 283:277–292

    Google Scholar 

  • Klein CD, Raisz LG (1971) Role of adenosine-3′,5′-monophosphate in the hormonal regulation of bone resorption: studies with cultured fetal bone. Endocrinology 89:818–826

    Google Scholar 

  • Kohlhardt M, Bauer B, Krause H, Fleckenstein A (1972) Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibres by the use of specific inhibitors. Pflügers Arch 335:309–322

    Google Scholar 

  • Kohlhart M, Kübler M (1975) The influence of metabolic inhibitors upon the transmembrane slow inward current in the mammalian ventricular myocardium. Arch Pharmacol 290:265–274

    Google Scholar 

  • Kohlhart M, Mnich Z, Maier G (1977) Alteration of the excitation process of the sinoatrial pacemaker cell in the presence of anoxia and metabolic inhibitors. J Mol Cell Cardiol 9:477–488

    Google Scholar 

  • Koketsu K, Kitamura R, Tanaka R (1964) Binding of calcium ions to cell membrane isolated from bullfrog skeletal muscle. Am J Physiol 207:509–512

    Google Scholar 

  • Kondo S, Schulz I (1976a) Calcium ion uptake in isolated pancreas cells induced by secretagogues. Biochim Biophys Acta 419:76–92

    Google Scholar 

  • Kondo S, Schulz I (1976b) Ca++ fluxes in isolated cells of rat pancreas. Effect of secretagogues and different Ca++ concentrations. J Membr Biol 29:185–203

    Google Scholar 

  • Kostyuk PG, Krishtal OA (1977a) Separation of sodium and calcium currents in the somatic membrane of mollusc neurones. J Physiol (Lond) 270:545–568

    Google Scholar 

  • Kostyuk PG, Krishtal OA (1977b) Effects of calcium and calcium-chelating agents on the inward and outward current in the membrane of mollusc neurones. J Physiol (Lond) 270:569–580

    Google Scholar 

  • Krall JF, Swensen JL, Korenman SG (1976) Hormonal control of uterine contraction characterization of cyclic AMP-dependent membrane properties in the myometrium. Biochim Biophys Acta 448:578–588

    Google Scholar 

  • Krawitt EL, Kunin AS, Bettejayne FB (1976) Intestinal mitochondrial calcium uptake during adaptation to dietary calcium restriction. Calcif Tissue Res 21:129–133

    Google Scholar 

  • Krawitt EL, Stubbert PR (1972) The role of intestinal transport proteins in cortisone-mediated suppression of Ca2+ absorption. Biochim Biophys Acta 274:179–188

    Google Scholar 

  • Kretsinger RH (1979) The informational role of calcium in the cytosol. Adv Cyclic Nucl Res 11:1–26

    Google Scholar 

  • Kuntzinger H, Amiel C, Roinel N, Morel F (1974) Effects of parathyroidectomy and cyclic AMP on renal transport of phosphate, calcium, and magnesium. Am J Physiol 227:905–911

    Google Scholar 

  • Kurebe M (1978) Interaction of dibucaine and calcium ion on a calcium pump reconstituted from defined components of intestinal brush border. Mol Pharmacol 14:138–144

    Google Scholar 

  • Kurebe M (1979) Effect of lipid on the access of ATP and calcium to the delipidated Ca++-ATPase of intestinal brush border membrane. Life Sci 24:275–282

    Google Scholar 

  • Lacourt A (1971) Action post mortem du pH et de la temperature sur le captage de calcium et l'activité ATPasique du réticulum sarcoplasmique fragmenté du muscle bovin. Ann Biol Anim Bioch Biophys 11:681–694

    Google Scholar 

  • Lamb JF, Lindsay R (1971) Effect of Na, metabolic inhibitors and ATP on Ca movements in L cells. J Physiol (Lond) 218:691–708

    Google Scholar 

  • Lamb JF, McCall D (1972) Effect of prolonged ouabain treatment on Na, K, Cl and Ca concentration and fluxes in cultured human cells. J Physiol (Lond) 225(3):599–617

    Google Scholar 

  • Langer G, Poole-Wilson P (1977) The effect of acidosis and maganese on calcium exchange in the myocardium of the rabbit. J Physiol (Lond) 265:20

    Google Scholar 

  • Lassen UV, Nielsen AMT, Pape L, Simonsen LO (1971) The membrane potential of Ehrlich ascites tumor cells — microelectrode measurements and their critical evaluation. J Membr Biol 6:269–288

    Google Scholar 

  • Lassen UV, Sten-Knudsen O (1968) Direct measurements of membrane potential and membrane resistance of human red cells. J Physiol (Lond) 195:681–696

    Google Scholar 

  • Lazarewicz JW, Kanje M, Sellström A, Hamberger A (1977) Calcium fluxes in cultures and bulk isolated neuronal and glial cells. J Neurochem 29:495–502

    Google Scholar 

  • Lea TJ, Ashley CC (1978) Increase in free Ca2+ in muscle after exposure to CO2. Nature 275:236–238

    Google Scholar 

  • Lee KS, Shin BC (1969) Studies on the active transport of Ca++ in human red cells. J Gen Physiol 54:713–729

    Google Scholar 

  • Lehninger AL (1964) The mitochondrion. Benjamin, New York

    Google Scholar 

  • Lehninger AL (1970) Mitochondria and calcium ion transport. Biochem J 119:129–138

    Google Scholar 

  • Lehninger AL (1974a) Role of phosphate and other proton-donating anions in respiration coupled transport of calcium by mitochondria. Proc Natl Acad Sci USA 71:1520–1524

    Google Scholar 

  • Lehninger AL (1974b) Ca2+ transport by mitochondria and its possible role in the cardiac contraction-relaxation cycle. Circ Res 35(Suppl III):83–90

    Google Scholar 

  • Lehninger AL, Rossi CS, Greenwalt JW (1963) Respiration-dependent accumulation of inorganic phosphate and Ca++ by rat liver mitochondria. Biochem Biophys Res Commun 10:444–448

    Google Scholar 

  • Lehninger AL, Carafoli E, Rossi CS (1967) Energy-linked ion movements in mitochondrial systems. Adv Enzymol 29:259–320

    Google Scholar 

  • Lehninger AL, Reynafarje B, Vercesi A, Tew WP (1978a) Transport and accumulation of calcium mitochondria. Ann NY Acad Sci 307:160–176

    Google Scholar 

  • Lehninger AL, Vercesi A, Bababunmi ES (1978b) Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides. Proc Natl Acad Sci USA 75:1690–1694

    Google Scholar 

  • Lentz RW, Harrison CE Jr, Dewey JD, Barnhorst DA, Danielson GK, Pluth JR (1978) Functional evaluation of cardiac sarcoplasmic reticulum and mitochondria in human pathologic states. J Mol Cell Cardiol 10:3–30

    Google Scholar 

  • LePeuch CJ, Haiech J, Demaille JG (1979) Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate-dependent and calcium-calmodulin-dependent phosphorylation. Biochemistry 18:5150–5157

    Google Scholar 

  • Levinson C (1967) Calcium exchange in Ehrlich mouse ascites tumor cells. Biochim Biophys Acta 135:921–926

    Google Scholar 

  • Levinson C, Blumenson LE (1970) Calcium transport and distribution in Ehrlich mouse ascites tumor cells. J Cell Physiol 75:231–240

    Google Scholar 

  • Li CL, Shy GM, Wells J (1957) Some properties of mammalian skeletal muscle fibres with particular reference to fibrillation potentials. J Physiol (Lond) 135:522–535

    Google Scholar 

  • Locke F (1894) Notiz über den Einfluß physiologischer Kochsalzlösung auf die elektrische Erregbarkeit von Muskel und Nerv. Zentralbl für Physiologie 8:166

    Google Scholar 

  • Lolley RN (1963) The calcium content of isolated cerebral tissues and their steady state exchange of calcium. J Neurochem 10:665–676

    Google Scholar 

  • Loud AV (1962) A method for the quantitative estimation of cytoplasmic structures. J Cell Biol 15:481–487

    Google Scholar 

  • Lowe CU, Lehninger AL (1955) Oxidation and phosphorylation in liver mitochondria lacking “polymerized” ribonuclear acid. J Biophys Biochem Cytol 1:89–92

    Google Scholar 

  • Lowe CU, MacKinney D, Sarkaria D (1955) Effect of cortisone on rat liver mitochondria. J Biophys Biochem Cytol 1:237–244

    Google Scholar 

  • Lucas M, Schmid G, Kromao R, Löffler G (1978) Calcium metabolism and enzyme secretion in guinea pig pancreas. Uptake, storage and release of calcium in whole cells and mitochondrial and microsomal fractions. Eur J Biochem 85:609–619

    Google Scholar 

  • Lundberg A (1958) Electrophysiology of salivary glands. Physiol Rev 38:21–40

    Google Scholar 

  • Lupianez JA, Dileepan KN, Wagle SR (1979) Interrelationship of somatostatin, insulin and calcium in the control of gluconeogenesis in kidney cortex slices. Biochem Biophys Res Commun 90:1153–1158

    Google Scholar 

  • Luthra MG, Hildebrandt GR, Hanahan DJ (1976a) Studies on an activator of the (Ca++ + Mg++)-ATPase of human ery throcyte membranes. Biochim Biophys Acta 419:164–179

    Google Scholar 

  • Luthra MG, Hildenbrandt GR, Kim HD, Hanahan DJ (1976b) Observations on the (Ca++ + Mg++)ATPase activator found in various mammalian erythrocytes. Biochim Biophys Acta 419:180–186

    Google Scholar 

  • Lüttgau HC, Niedergerke R (1958) The antagonism between Ca and Na ions on the frog's heart. J Physiol (Lond) 143:486–505

    Google Scholar 

  • Lutwak-Mann C, McIntosh JEA (1971) Calcium content and uptake of 45Ca in rabbit blastocysts and their environment. J Reprod Fertil 27:471–475

    Google Scholar 

  • Luxoro M, Yanez E (1968) Permeability of the giant axon of Dosidicus gigas to calcium ions. J Gen Physiol 51:1115–1225

    Google Scholar 

  • Lynch TJ, Cheung WY (1979) Human erythrocyte Ca2+-Mg2+-ATPase: mechanisms of stimulation by Ca2+. Arch Biochem Biophys 194:165–170

    Google Scholar 

  • MacManus JP, Whitfield JF (1970) Inhibition by thyrocalcitonin of the mitogenic action of parathyroid hormone and cyclic adenosine 3′,5′-monophosphate on rat thymocytes. Endocrinology 86:934–939

    Google Scholar 

  • Malaisse WJ, Herchuelz A, Devis G, Somers G, Boschero AC, Hutton JC, Kawazu S, Sener A (1978) Regulation of calcium fluxes and their regulatory roles in pancreatic islets. Ann NY Acad Sci 307:562–581

    Google Scholar 

  • Malaisse-Lagae F, Malaisse WJ (1971) Stimulus-secretion coupling of glucose-induced insulin release. III. Uptake of 45calcium by isolated islets of Langerhans. Endocrinology 88:72–80

    Google Scholar 

  • Malmström K, Carafoli E (1977) The interaction of Ca2+ with mitochondria from human myometrium. Arch Biochem Biophys 182:657–666

    Google Scholar 

  • Martin BR, Clausen T, Gliemann J (1975) Relationships between the exchange of Ca++ and PO 4−2 in isolated fat cells. Biochem J 152:121–129

    Google Scholar 

  • Martin JH, Matthew JL (1970) Mitochondrial granules in chondrocytes osteoblasts and osteocytes. An ultrastructural and microincineration study. Clin Orth op 68:273–278

    Google Scholar 

  • Martonosi AN (1975) The mechanism of Ca2+ transport in sarcoplasmic reticulum. In: Carafoli E, Clementi F, Drabikowski W, Magreth A (eds) Calcium transport in contraction and secretion. North Holland, Amsterdam, pp 313–327

    Google Scholar 

  • Martonosi AN, Chyn TL, Schibeci A (1978) The calcium transport of sarcoplasmic reticulum. Ann NY Acad Sci 307:148–156

    Google Scholar 

  • Matlib A, O'Brien JP (1974) Adenosine 3′:5′-cyclic monophosphate stimulation of calcium efflux. Biochem Soc Trans 2:997–1000

    Google Scholar 

  • Matsushima Y, Gemba M (1979) Divalent cation transport in kidney slices. I. Properties of calcium transport in slices of rat kidney cortex and the effects of diuretics. Jpn J Pharmacol 29:367–374

    Google Scholar 

  • Matthews EK (1967) Membrane potential measurement in cells of the adrenal gland. J Physiol (Lond) 189:139–148

    Google Scholar 

  • Matthews EK (1975) Calcium and stimulus-secretion coupling in pancreatic islet cells. In: Carafoli E, Clementi F, Drabikowski W, Magreth A (eds) Calcium transport in contraction and secretion. North Holland, Amsterdam, pp 203–210

    Google Scholar 

  • Matthews EK, Petersen OH (1973) Pancreas acinar cells: ionic dependence of the membrane potential and acetylcholine-induced depolarization. J Physiol (Lond) 231:283–295

    Google Scholar 

  • Matthews EK, Saffran M (1967) Steroid production and membrane potential measurement in cells of the adrenal cortex. J Physiol (Lond) 189:149–161

    Google Scholar 

  • Matthews EK, Sakamoto Y (1975a) Electrical characteristics of pancreatic islet cells. J Physiol (Lond) 246:421–437

    Google Scholar 

  • Matthews EK, Sakamoto Y (1975b) Pancreatic islet cells: electrogenic and electrodiffusional control of membrane potential. J Physiol (Lond) 246:439–457

    Google Scholar 

  • Matthews EK, Petersen OH, Williams JA (1973) Pancreatic acinar cells: acetylcholine-induced membrane depolarization, calcium efflux and amylase release. J Physiol (Lond) 234:689–701

    Google Scholar 

  • Matthews JL, Martin JH, Sampson HW, Kunin AS, Roan JH (1970) Mitochondrial granules in the normal and rachitic rat epiphysis. Calcif Tissue Res 5:91–99

    Google Scholar 

  • May RJ, Conlon TP, Erspamer V, Gardner JD (1978) Actions of peptides isolated from amphibian skin on pancreatic acinar cells. Am J Physiol 235:E112–E118

    Google Scholar 

  • McDonald JM, Bruns DE, Jarett L (1976a) Ability of insulin to increase calcium binding by adipocyte plasma membranes. Proc Natl. Acad Sci USA 73:1542–1546

    Google Scholar 

  • McDonald JM, Bruns DE, Jarett L (1976b) The ability of insulin to alter the stable calcium pools of isolated adipocyte subcellular fractions. Biochem Biophys Res Commun 71:114–121

    Google Scholar 

  • McDonald JM, Bruns DE, Jarett L (1978) Ability of insulin to increase calcium uptake by adipocyte endoplasmic reticulum. J Biol Chem 253:3504–3508

    Google Scholar 

  • McLennan DH, Holland PC (1975) Calcium transport in sarcoplasmic reticulum. Ann Rev Biophys Bioengin 4:377–404

    Google Scholar 

  • McNaughton PA (1978) Calcium transport in excitable membranes. In: Morad M, Tabatabai M, Smith S (eds) Biophysical aspects of cardiac muscle. Academic Press, New York, pp 107–128

    Google Scholar 

  • Mears DC (1971) Effects of parathyroid hormone and thyrocalcitonin on the membrane potential of osteoblasts. Endocrinology 88:1021–1028

    Google Scholar 

  • Meech RW (1974) The sensitivity of Helix aspersa neurones to injected calcium ions. J Physiol (Lond) 237:259–277

    Google Scholar 

  • Meech RW, Standen NB (1975) Potassium activation in Helix aspersa neurones under voltage clamp: a component mediated by calcium influx. J Physiol (Lond) 249:211–239

    Google Scholar 

  • Meinertz T, Nawrath H, Scholz H (1973a) Dibutyryl cyclic AMP and adrenaline increase contractile force and 45Ca uptake in mammalian cardiac muscle. Naunyn Schmiedebergs Arch Pharmacol 277:107–112

    Google Scholar 

  • Meinertz T, Nawrath H, Scholz H (1973b) Stimulatory effects of DB-c-AMP and adrenaline on myocardial contraction and 45Ca exchange. Experiments at reduced calcium concentration and low frequencies of stimulation. Naunyn Schmiedebergs Arch Pharmacol 279:327–338

    Google Scholar 

  • Mela L (1968) Interaction of La+3 and local anesthetic drugs with mitochondrial Ca+2 and Mn+2 uptake. Arch Biochem Biophys 123:286–293

    Google Scholar 

  • Mela L (1969) Inhibition and activation of calcium transport in mitochondria. Effect of lanthanides and local anesthetic drugs. Biochemistry 8:2481–2486

    Google Scholar 

  • Mela L (1977) Mechanism and physiological significance of calcium transport across mammalian mitochondrial membranes. In: Bronner F, Kleinzeller A (eds) Current topics in membranes and transport, vol 9. Academic Press, New York, pp 321–366

    Google Scholar 

  • Mela L, Chance B (1969) Calcium carrier and the “high affinity calcium binding site” in mitochondria. Biochem Biophys Res Commun 35:556–559

    Google Scholar 

  • Melson GL, Chase LR, Aurbach GD (1970) Parathyroid hormone sensitive adenyl cyclase in isolated renal tubules. Endocrinology 86:511–518

    Google Scholar 

  • Miller BE, Nelson DL (1977) Calcium fluxes in isolated acinar cells from rat parotid. Effect of adrenergic and cholinergic stimulation. J Biol Chem 252:3629–3635

    Google Scholar 

  • Miller DJ, Moiescu DG (1976) The effects of very low external calcium and sodium concentration on cardiac contractile strength and calcium-sodium antagonism. J Physiol (Lond) 259:283–308

    Google Scholar 

  • Mitchell P (1966) Metabolic flow in the mitochondrial multiphase system: an appraisal of the chemi-osmotic theory of oxydative phosphorylation. In: Tager JM, Papa S, Quagliariello E, Slater EC (eds) Regulation of metabolic processes in mitochondria. Elsevier, Amsterdam, pp 65–85

    Google Scholar 

  • Mitchell P, Moyle J (1969) Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria. Eur J Biochem 7:471–484

    Google Scholar 

  • Moore CL (1971) Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem Biophys Res Commun 42:298–305

    Google Scholar 

  • Moore JW, Cole KS (1960) Resting and action potentials of squid giant axon in vivo. J Gen Physiol 43:961–970

    Google Scholar 

  • Moore L, Chen T, Knapp HR Jr, Landon EJ (1975) Energy dependent calcium sequestration activity in rat liver microsomes. J Biol Chem 250:4562–4568

    Google Scholar 

  • Moore L, Fitzpatrick DF, Chen TS, Landon EJ (1974) Calcium pump activity of the renal plasma membrane and renal microsomes. Biochim Biophys Acta 345:405–418

    Google Scholar 

  • Moore L, Pastan J (1977a) Regulation of intracellular calcium in chick embryo fibroblast: calcium uptake by the microsomal fraction. J Cell Physiol 91:289–296

    Google Scholar 

  • Moore L, Pastan I (1977b) Energy dependent calcium uptake in cultured mouse fibroblast microsomes. Regulation of the uptake system by cell density. J Biol Chem 252:6304–6309

    Google Scholar 

  • Moore L, Pastan I (1978) Energy dependent calcium uptake by fibroblast microsomes. Ann NY Acad Sci 307:177–193

    Google Scholar 

  • Morgenstern M, Noack E, Köhler E (1972) The effects of isoprenaline and tyramine on the 45calcium uptake, the total calcium content and the contraction force of isolated guinea pig atria in dependence on different extracellular hydrogen ion concentrations. Arch Pharmacol 274:125–137

    Google Scholar 

  • Moriarty CM (1977) Involvement of intracellular calcium in hormone secretion from rat pituitary cells. Mol Cell Endocrinol 6:349–361

    Google Scholar 

  • Moriarty CM (1980) Kinetic analysis of calcium distribution in rat anterior pituitary slices. Am J Physiol 238:E167–E173

    Google Scholar 

  • Moyle J, Mitchell P (1977a) Electric charge stoichiometry of calcium translocation in rat liver mitochondria. FEBS Lett 73:131–136

    Google Scholar 

  • Moyle J, Mitchell P (1977b) The lanthanide-sensitive calcium phosphate porter of rat liver mitochondria. FEBS Lett 77:136–140

    Google Scholar 

  • Mullins LJ (1976) Steady-state calcium fluxes: membrane versus mitochondrial control of ionized calcium in axoplasm. Fed Proc 35:2583–2588

    Google Scholar 

  • Mullins LJ (1977) A mechanism for Na/Ca transport. J Gen Physiol 70:681–695

    Google Scholar 

  • Mullins LJ, Brinley FJ Jr (1975) Sensitivity of calcium efflux from squid axons to changes in membrane potential. J Gen Physiol 65:135–152

    Google Scholar 

  • Mullins LJ, Requena J (1979) Calcium measurement in the periphery of an axon. J Gen Physiol 74:393–413

    Google Scholar 

  • Murad F, Brewer HB Jr, Vaughan M (1970) Effect of thyrocalcitonin on adenosine 3′,5′-cyclic phosphate formation by rat kidney and bone. Proc Natl Acad Sci 65:446–453

    Google Scholar 

  • Nagata N, Rasmussen H (1968) Parathyroid hormone and renal cell metabolism. Biochemistry 7:3728–3733

    Google Scholar 

  • Nagata N, Rasmussen H (1970) Parathyroid hormone, 3′–5′ AMP, Ca++ and renal gluconeogenesis. Proc Natl Acad Sci USA 65:368–374

    Google Scholar 

  • Nakamura Y, Schwartz A (1970) Possible control of in tracellular calcium metabolism by [H+]: sarcoplasmic reticulum of skeletal and cardiac muscle. Biochem Biophys Res Commun 41:830–836

    Google Scholar 

  • Nakamura Y, Schwartz A (1972) The influence of hydrogen ion concentration on calcium binding and release by skeletal muscle sarcoplasmic reticulum. J Gen Physiol 59:22–32

    Google Scholar 

  • Nanninga LB (1961a) The association constant of the complexes of adenosine triphosphate with magensium, calcium, strontium and barium ions. Biochim Biophys Acta 54:330–338

    Google Scholar 

  • Nanninga LB (1961b) Calculation of free magnesium, calcium and potassium in muscle. Biochim Biophys Acta 54:338–344

    Google Scholar 

  • Navickis RJ, Dial OK, Katzenellenbogen BS, Nalbandov AV (1979) Effect of gonadal hormones on calcium-binding protein in chick duodenum. Am J Physiol 237:E409–E417

    Google Scholar 

  • Nawrath H, TenEick RE, McDonald TF, Trautwein W (1977) On the mechanism underlying the action of D-600 on slow inward current and tension in mammalian myocardium. Circ Res 40:408–414

    Google Scholar 

  • Nayler WG, Merrillees NCR, Chipperfield D, Kurtz JB (1971) Influence of hyperthyroidism on the uptake and binding of calcium by cardiac microsomal fractions and on mitochondrial structures. Cardiovasc Res 5:469–482

    Google Scholar 

  • Nayler WG, Poole-Wilson PA, Williams A (1979) Hypoxia and calcium. J Mol Cell Cardiol 11:683–706

    Google Scholar 

  • Nicholls DG (1974) The influence of respiration and ATP hydrolysis on the protonelectrochemical gradient across the inner membrane of rat liver mitochondria as determined by ion distribution. Eur J Biochem 50:305–315

    Google Scholar 

  • Nicholls DG (1978a) Calcium transport and proton electron chemical potential gradient in mitochondria from guinea pig cerebral cortex and rat heart. Biochem J 170:511–522

    Google Scholar 

  • Nicholls DG (1978b) The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem J 176:463–474

    Google Scholar 

  • Nichols G Jr, Rogers P (1971) Mechanism for the transfer of calcium into and out of the skeleton. Pediatrics 47:211–228

    Google Scholar 

  • Niedergerke R (1963) Movements of Ca in beating ventricles of the frog heart. J Physiol (Lond) 167:551–580

    Google Scholar 

  • Niggli V, Ronner P, Carafoli E, Penniston JT (1979) Effect of calmodulin on the (Ca2+ + Mg2+) ATPase partially purified from erythrocyte membranes. Arch Biochem Biophys 198:124–130

    Google Scholar 

  • Nishikori K, Maeno H (1979) Close relationship between adenosine 3′,5′-monophosphate-dependent endogenous phosphorylation of a specific protein and stimulation of calcium uptake in rat uterine microsomes. J Biol Chem 254:6099–6106

    Google Scholar 

  • Nishikori K, Takenaka T, Maeno H (1977) Stimulation of microsomal calcium uptake and protein phosphorylation by adenosine cyclic 3′5′-monophosphate in rat uterus. Mol Pharmacol 13:671–678

    Google Scholar 

  • Noack EA, Heinen EM (1977) A kinetic study of calcium transport by heart mitochondria. Eur J Biochem 79:245–250

    Google Scholar 

  • Ogawa Y (1970) Some properties of fragmented frog sarcoplasmic reticulum with particular reference to its response to caffeine. J Biochem (Tokyo) 67:667–683

    Google Scholar 

  • Ohashi T, Uchida S, Nagai K, Yoshida H (1970) Studies on phosphate hydrolyzing activities in the synaptic membrane. J Biochem (Tokyo) 67:635–641

    Google Scholar 

  • Ohtsuki I (1969) ATP-dependent Ca uptake of brain microsomes. J Biochem (Tokyo) 66:645–650

    Google Scholar 

  • Okada Y, Ogawa M, Aoki N, Izutsu K (1973) The effect of K+ on the membrane potential in HeLa cells. Biochim Biophys Acta 291:116–126

    Google Scholar 

  • Oswald N, Binswanger U (1979) Proximal and distal intestinal calcium transport in vitro as influenced by low calcium diet, uremia, parathyroidectomy and 1,25-dihydroxycholecalciferol treatment in rats. Res Exp Med 175(1):19–30

    Google Scholar 

  • Otsuka M Ohtsuki I, Ebashi S (1965) ATP dependent Ca binding of brain microsome. J Biochem (Tokyo) 58:188–190

    Google Scholar 

  • Overton E (1904) Beiträge zur allgemeinen Muskel-und Nervenphysiologie. Pfluegers Arch 105:176–290

    Google Scholar 

  • Owen JD, Brown HM, Pemberton JP (1977) Neurophysiological applications of a calcium selective microelectrode. Anal Chim Acta 90:241–244

    Google Scholar 

  • Palek J, Curby WA, Lionetti FJ (1971) Relation of Ca++-activated ATPase to Ca++ linked shrinkage of human red cell ghosts. Am J Physiol 220:1028–1032

    Google Scholar 

  • Palmer RF, Posey VA (1970) Calcium and adenosine triphosphate binding to renal membranes. J Gen Physiol 55:89–103

    Google Scholar 

  • Panfili E, Sandri G, Sottocasa GL, Lunazzi G, Liut G, Graziosi G (1976) Specific inhibition of mitochondrial Ca2+ transport by antibodies directed to the Ca2+-binding glycoprotein. Nature 264:185–186

    Google Scholar 

  • Papworth DG, Patrick G (1970) The kinetics of influx of calcium and strontium into rat intestine in vitro. J Physiol (Lond) 210:999–1020

    Google Scholar 

  • Parker JC, Barritt GJ (1979) Effects of epinephrine on the subcellular distribution of exchangeable calcium in isolated rat heptaocytes. Proc Aust Biochem Soc 12:52

    Google Scholar 

  • Parkinson DK, Radde IC (1971) Properties of a Ca2+ and Mg2+-activated ATP hydrolyzing enzyme in rat kidney cortex. Biochim Biophys Acta 242:238–246

    Google Scholar 

  • Patriarca P, Carafoli E (1968) Study of the intracellular transport of calcium in rat heart. J Cell Physiol 72:29–38

    Google Scholar 

  • Pau B, Dornand J, Mani JC (1976) Etude critique de l'activité ATPase activée par Ca2+ ou Mg2+ des membranes plasmiques lymphocytaires. Biochimie 58:593–599

    Google Scholar 

  • Peachy LD (1964) Electron microscopic observations on the accumulation of divalent cations in intramitochondrial granules. J Cell Biol 20:95–108

    Google Scholar 

  • Peck WA, Carpenter K, Messinger K, DeBra D (1973) Cyclic 3′5′ adenosine monophosphate in isolated bone cells: response to low concentrations of parathyorid hormone. Endocrinology 92:692–697

    Google Scholar 

  • Perdue JF (1971) The isolation and characterization of plasma membranes from cultured cells. III. The adenosine triphosphate-dependent accumulation of Ca2+ by chick embryo fibroblasts. J Biol Chem 246:6750–6759

    Google Scholar 

  • Petersen OH, Iwatsuki N (1978) The role of calcium in pancreatic acinar cell stimulus-secretion coupling: an electrophysiological approach. Ann NY Acad Sci 307:599–617

    Google Scholar 

  • Petith MM, Wilson HD, Schedl HP (1979) Vitamin D dependence of in vivo calcium transport and mucosal calcium binding protein in rat large intestine. Gastroenterology 76:99–104

    Google Scholar 

  • Peug CF, Price DW, Bhuvaneswaran C, Wadkins CL (1974) Factors that influence phosphoenolpyruvate-induced calcium efflux from rat liver mitochondria. Biochem Biophys Res Commun 56:134–141

    Google Scholar 

  • Plishker G, Gitelman H (1976) Calcium transport in intact human erythrocytes. J Gen Physiol 68:29–41

    Google Scholar 

  • Pors-Nielsen S, Petersen OH (1972) Transport of calcium in the perfused submandibular gland of the cat. J Physiol (Lond) 223:685–697

    Google Scholar 

  • Portzehl H, Caldwell PC, Rüegg JC (1964) The dependence of contraction and relaxation of muscle fibres from the crab Maia squinado on the internal concentrations of free calcium ions. Biochim Biophys Acta 79:581–591

    Google Scholar 

  • Porzig H (1972) ATP-independent calcium net movements in human red cell ghosts. J Membr Biol 8:237–258

    Google Scholar 

  • Pozzan T, Bragadin M, Azzone GF (1977) Disequilibrium between steady-state Ca2+ accumulation ratio and membrane potential in mitochondria. Pathway and role of calcium efflux. Biochemistry 16:5618–5625

    Google Scholar 

  • Price JM, Miller EC, Miller JA (1948) The intracellular distribution of protein, nucleic acids, riboflavin and protein bound aminoazo dye in the liver of rats fed p-dimethylaminoazobenzene. J Biol Chem 173:345–353

    Google Scholar 

  • Price JM, Miller JA, Miller EC, Weber GM (1949) Studies on the intracellular composition of liver and liver tumor from rats fed 4-dimethylaminoazobenzene. Cancer Res 9:96–102

    Google Scholar 

  • Prince WT, Berridge MJ (1973) The role of calcium in the action of 5-hydroxytryptamine and cyclic AMP on salivary glands. J Exp Biol 58:367–384

    Google Scholar 

  • Prince WT, Berridge MJ, Rasmussen H (1972) Role of calcium and adenosine 3′:5′-cyclic monophosphate in controlling fly salivary gland secretion. Proc Natl Acad Sci USA 69:553–557

    Google Scholar 

  • Puskin JS, Gunter TE, Gunter KK, Russell PR (1976) Evidence for more than one Ca2+ transport mechanism in mitochondria. Biochemistry 15:3834–3842

    Google Scholar 

  • Quinn PJ, Dawson RMC (1972) The pH dependence of calcium absorption onto anionic phospholipid monolayers. Chem Phys Lipids 8:1–9

    Google Scholar 

  • Quist EE, Roufogalis BD (1975) Calcium transport in human erythrocytes starvation and reconstitution of high and low affinity (Mg + Ca) ATPase activities in membranes prepared at low ionic strength. Arch Biochem Biophys 168:240–251

    Google Scholar 

  • Quist EE, Roufogalis BD (1977) Association of (Ca + Mg)-ATPase activity with ATP-dependent Ca uptake in vesicles prepared from human erythrocytes. J Supramol Struct 6:375–381

    Google Scholar 

  • Raeymaekers L, Wuytack F, Casteels R (1973) Na-Ca exchange in smooth muscle cells of Taenia coli. Arch Int Pharmacodyn 204:196–197

    Google Scholar 

  • Rahamimoff H, Abramovitz E (1978) Calcium transport and ATPase activity of synaptosomal vesicles from rat brain. FEBS Lett 92:163–167

    Google Scholar 

  • Raisz LG, Trummel CL, Wener JA, Simmons H (1972) Effect of glucocorticoids on bone resorption in tissue culture. Endocrinology 90:961–967

    Google Scholar 

  • Rambourg A, Leblond CP (1967) Electron microscope observations on the carbohydrate-rich cell coat present at the surface of cells in the rat. J Cell Biol 32:27–53

    Google Scholar 

  • Rasmussen H (1966) Mitochondrial ion transport: mechanism and physiological significance. Fed Proc 25:903–911

    Google Scholar 

  • Rasmussen H (1970) Cell communication, calcium ion, and cyclic adenosine monophosphate. Science 170:404–412

    Google Scholar 

  • Rasmussen H (1971) Ionic and hormonal control of calcium homeostasis. Am J Med 50:567–588

    Google Scholar 

  • Rasmussen H, Bordier P (1974) The physiological and cellular basis of metabolic bone disease. Williams & Wilkins, Baltimore

    Google Scholar 

  • Rasmussen H, Goodman DP (1977) Relationships between calcium and cyclic nucleotides in cell activation. Physiol Rev 57:421–509

    Google Scholar 

  • Rasmussen H, Jensen P, Lake W, Friedmann N, Goodman DBP (1975a) Cyclic nucleotides and cellular calcium metabolism. Adv Cyclic Nucleotide Res 5:375–394

    Google Scholar 

  • Rasmussen H, Lake W, Allen JE (1975b) The effect of catecholamines and prostaglandins upon human and rat erythrocytes. Biochim Biophys Acta 411:63–73

    Google Scholar 

  • Redmann K (1971) Messungen elektrischer Membranpotentiale kultivierter Einzelzellen mittels Mikroelektroden. Acta Biol Med Germ 27:55–68

    Google Scholar 

  • Redmann K, Stolte C, Lüders D (1967) Membranpotential-Messungen an KB-Zellkulturen. Naturwissenschaften 54:255

    Google Scholar 

  • Reed KC, Bygrave FL (1974a) The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red. Biochem J 140:143–155

    Google Scholar 

  • Reed K, Bygrave F (1974b) A reevaluation of energy-independent calcium ion binding by rat liver mitochondria. Biochem J 142:535–566

    Google Scholar 

  • Reed KC, Bygrave FL (1974c) Accumulation of lanthanum by rat liver mitochondria. Biochem J 138:239–252

    Google Scholar 

  • Reed KC, Bygrave LF (1975a) Methodology for in vitro studies of Ca2+ transport. Anal Biochem 67:44–54

    Google Scholar 

  • Reed KC, Bygrave FL (1975b) A kinetic study of mitochondrial calcium transport. Eur. J Biochem 55:497–504

    Google Scholar 

  • Reed PW (1977) Calcium ionophore activity of prostaglandin endoperoxides and stabilized analogs of prostaglandin H-2. Fed Proc 36:673

    Google Scholar 

  • Renckens BAM, Schrijen JJ, Swarts HGP, De Pont JJHHM, Bonting SL (1978) Role of calcium in exocrine pancreatic secretion. IV. Calcium movements in isolated acinar cells of rabbit pancreas. Biochim Biophys Acta 544:338–350

    Google Scholar 

  • Repke DI, Katz AM (1972) Calcium binding and calcium uptake by cardiac microsomes: a kinetic analysis. J Mol Cell Cardiol 4:401–416

    Google Scholar 

  • Requena J (1978) Calcium efflux from squid axons under constant sodium electrochemical gradient. J Gen Physiol 72:443–470

    Google Scholar 

  • Requena J, DiPolo R, Brinley FJ, Mullins LJ (1977) The control of ionized calcium in squid axon. J Gen Physiol 70:329–353

    Google Scholar 

  • Requena J, Mullins LJ (1979) Calcium movements in nerve fibers. Q Rev Biophys 12:371–460

    Google Scholar 

  • Requena J, Mullins LJ, Brinley FJ Jr (1979) Calcium content and net fluxes in squid giant axons. J Gen Physiol 73:327–342

    Google Scholar 

  • Reuter H (1967) The dependence of slow inward current in Purkinje fibres on the extracellular calcium concentration. J Physiol (Lond) 192:479–492

    Google Scholar 

  • Reuter H (1970) Calcium transport in cardiac muscle. In: Bolis L (ed) Permeability and function of biological membranes. North Holland, Amsterdam, pp 342–347

    Google Scholar 

  • Reuter H (1973) Divalent cations as charge carriers in excitable membranes. Prog Biophys Mol Biol 26:1–43

    Google Scholar 

  • Reuter H (1974a) Exchange of calcium ions in the mammalian myocardium: mechanisms and physiological significance. Circ Res 34:599–605

    Google Scholar 

  • Reuter H (1974b) Localization of β-adrenergic receptors and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle. J Physiol (Lond) 242:429–451

    Google Scholar 

  • Reuter H (1979) Properties of two inward membrane currents in the heart. Annu Rev Physiol 41:413–424

    Google Scholar 

  • Reuter H, Blaustein MP, Haeusler G (1973) Na-Ca exchange and tension development in arterial smooth muscle. Philos Trans R Soc Lond (Biol) 265:87–94

    Google Scholar 

  • Reuter H, Scholz H (1977a) A study of the ion selectivity and the kinetic properties of the calcium dependent slow inward current in mammalian cardiac muscle. J Physiol (Lond) 264:17–47

    Google Scholar 

  • Reuter H, Scholz H (1977b) The regulation of the calcium conductance of cardiac muscle by adrenaline. J Physiol (Lond) 264:49–62

    Google Scholar 

  • Reuter H, Seitz N (1968) The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol (Lond) 195:451–470

    Google Scholar 

  • Reynafarje B, Lehninger AL (1969) High affinity and low affinity binding of Ca++ by rat liver mitochondria. J Biol Chem 244:584–593

    Google Scholar 

  • Reynafarje BL, Lehninger AL (1973) Ca2+ transport by mitochondria from L-1210 mouse ascites tumor cells. Proc Natl Acad Sci USA 70:1744–1748

    Google Scholar 

  • Ringer S (1883) A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J Physiol (Lond) 4:29–49

    Google Scholar 

  • Rink TJ (1977) The influence of sodium on calcium movement and catecholamine release in thin slices of bovine adrenal medulla. J Physiol (Lond) 266:297–325

    Google Scholar 

  • Robblee LS, Shepro D, Belamarich FA (1973) Calcium uptake and associated ATPase activity of isolated platelets membranes. J Gen Physiol 61:462–481

    Google Scholar 

  • Robinson JD, Lust WD (1968) Adenosine triphosphate-dependent calcium accumulation by brain microsomes. Arch Biochem Biophys 125:286–294

    Google Scholar 

  • Rodan GA, Feinstein MB (1976) Interrelationships between Ca++ and adenylate cyclase in the control of platelet secretion and aggregation. Proc Natl Acad Sci USA 73(6):1829–1833

    Google Scholar 

  • Rodan S, Rodan G (1974) The effect of parathyroid hormone and thyrocalcitonin on the accumulation of cyclic adenosine 3′,5′-monophosphate in freshly isolated bone cells. J Biol Chem 249:3068–3074

    Google Scholar 

  • Rodesch F, Bogaert C, Dumont JE (1976) Compartmentalization and movements of calcium in the thyroid. Mol Cell Endocrinol 5:303–313

    Google Scholar 

  • Rojas E, Taylor RE (1975) Simultaneous measurements of magnesium, calcium and sodium influxes in perfused giant axons under membrane potential control J Physiol (Lond) 252:1–27

    Google Scholar 

  • Romero P, Whittam R (1971) The control by internal calcium of membrane permeability to sodium and potassium. J Physiol (Lond) 214:481–507

    Google Scholar 

  • Ronner P, Gazzotti P, Carafoli E (1977) A lipid requirement for the (Ca2+ + Mg2+) activated ATPase of erythrocyte membranes. Arch Biochem Biophys 179:578–583

    Google Scholar 

  • Roos I, Crompton M, Carafoli E (1978) The effect of phosphoenolpyruvate on the retention of calcium by liver mitochondria. FEBS Lett 94:418–421

    Google Scholar 

  • Rorive G, Kleinzeller A (1972) The effect of ATP and Ca2+ on the cell volume in isolated kidney tubules. Biochim Biophys Acta 274:226–239

    Google Scholar 

  • Rose B, Lowenstein WR (1975) Calcium ion distribution in cytoplasm visualized by aequorin. Diffusion in the cytosol is restricted due to energized sequestring. Science 190:1204–1206

    Google Scholar 

  • Ross DH, Cardenas HL (1979) Nerve cell calcium as a messenger for opiate and endorphin action. In: Loh HH, Ross PH (eds) Neurochemical mechanisms of opiates and endorphins. Raven Press, New York. (Advances in biochemical psychopharmacology, vol 20, pp 301–338)

    Google Scholar 

  • Rossi C, Azzi A, Azzone GF (1967) Ion transport in liver mitochondria. I Metabolism-independent Ca++ binding and H+ release. J Biol Chem 242:951–957

    Google Scholar 

  • Rossi CS, Bielawski J, Carafoli E, Lehninger AL (1966) The relationship of the Ca++ efflux rate to the “super-stoichiometry” of respiration-linked Ca++ accumulation by mitochondria. Biochem Biophys Res Commun 22:206–210

    Google Scholar 

  • Rossi CS, Lehninger A (1974) Stoichiometry of respiratory stimulation, accumulation of Ca++ and phosphate, and oxidative phosphorylation in rat liver mitochondria. J Biol Chem 239:3971–3980

    Google Scholar 

  • Rossi JPFC, Garrahan PJ, Rega AF (1978) Reversal of the calcium pump in human red cells. J Membr Biol 44:37–46

    Google Scholar 

  • Rottenberg H (1973) The mechanism of energy-dependent ion transport in mitochondria. J Membr Biol 11:117–137

    Google Scholar 

  • Rottenberg H, Scarpa A (1974) Calcium uptake and membrane potential in mitochondria. Biochemistry 13:4811–4817

    Google Scholar 

  • Roulet MJ, Mongo KG, Vassort G, Ventura-Clapier R (1979) The dependence of twitch relaxation and sodium ions and on internal Ca2+ stores in voltage clamped frog atrial fibres. Eur J Physiol 379:259–268

    Google Scholar 

  • Rubanyi G, Kovach AGB (1979) Effect of ovarian steroid hormones on superficial activator calcium in the rabbit uterus. Acta Physiol Acad Sci Hung 53:71–80

    Google Scholar 

  • Rubin RP (1974) Calcium and the secretory process. Plenum, New York

    Google Scholar 

  • Ruigrok JC, Elbers PF (1972) The effects of calcium acetate on mitochondria in the perfused rat liver. I. Accumulation of Ca++ and concomitant swelling. Cytobiologie 5:51–64

    Google Scholar 

  • Russell JM, Blaustein MP (1974) Calcium efflux from barnacle muscle fibres: depenon external cations. J Gen Physiol 63:144–167

    Google Scholar 

  • Russell JM, Blaustein MP (1975) Calcium fluxes in internally dialyzed giant barnacle muscle fibres. J Membr Biol 23:157–179

    Google Scholar 

  • Sandri G, Panfili E, Sottocasa GL (1976) The calcium-binding glycoprotein and mitochondrial calcium movements. Biochem Biophys Res Commun 68:1272–1279

    Google Scholar 

  • Sarkadi B, MacIntyre JD, Gardos G (1978) Kinetics of active calcium transport in inside-out red cell membrane vesicles. FEBS Lett 89:78–82

    Google Scholar 

  • Sarkadi B, Szasz I, Gerlocozy A, Gardos G (1977) Transport parameters and stoichiometry of active calcium ion extrusion in intact human red cells. Biochim Biophys Acta 464:93–107

    Google Scholar 

  • Sayegh FS, Davis RW, Solomon GC (1974) Mitochondrial role in cellular mineralization. J Dent Res 53:581–587

    Google Scholar 

  • Scarpa A (1975) Kinetic and energy-coupling of Ca++ transport in mitochondria. In: Carafoli E, Clementi F, Drabikowski W, Magreth A (eds) Calcium transport in contraction and secretion. North Holland, Amsterdam, pp 65–76

    Google Scholar 

  • Scarpa A, Azzi A (1968) Cation binding to submitochondrial particles. Biochim Biophys Acta 150:473–481

    Google Scholar 

  • Scarpa A, Azzone G (1970) The mechanism of ion translocation in mitochondria. Eur J Biochem 12:328–335

    Google Scholar 

  • Scarpa A, Graziotti P (1973) Mechanisms for intracellular calcium regulation in heart. J Gen Physiol 62:756–772

    Google Scholar 

  • Scarpa A, Malmström K, Chiesi M, Carafoli E (1976) On the problem of the release of mitochondrial calcium by cyclic AMP. J Membr Biol 29:205

    Google Scholar 

  • Scarpa A, Brinley FJ, Dubyak G (1978a) Antipyrylazo, III, a “middle range” Ca2+ metallochromic indicator. Biochemistry 17:1378–1386

    Google Scholar 

  • Scarpa A, Brinley FJ, Tiffert T, Dubyak GR (1978b) Metallochromic indicators of ionized calcium. Annal NY Acad Sci 307:86–112

    Google Scholar 

  • Schanne O, Coraboeuf E (1966) Potential and resistance measurements of rat liver cells in situ. Nature 210:1390–1391

    Google Scholar 

  • Scharf O (1976) Ca+2 activation of membrane-bound (CA+2+Mg+2)-dependent ATPase from human erythrocytes prepared in the presence or absence of Ca+2. Biochim Biophys Acta 443:206–218

    Google Scholar 

  • Scharf O, Foder B (1978) Reversible shift between two states of Ca-ATPase in human erythrocytes mediated by Ca+2 and a membrane bound activator. Biochim Biophys Acta 509:67–77

    Google Scholar 

  • Schatzmann HJ (1966) ATP dependent Ca2+-extrusion from human red cells. Experientia 22:364–365

    Google Scholar 

  • Schatzmann HJ (1970) Transmembrane calcium movements in released human red cells. In: Cuthbert AW (ed) Calcium and cellular function. Macmillan, London, pp 85–95

    Google Scholar 

  • Schatzmann HJ (1973) Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells. J Physiol (Lond) 235:551–569

    Google Scholar 

  • Schatzmann HJ (1975) Active calcium transport and Ca2+-activated ATPase in human red cells. In: Bronner F, Kleinzeller A (eds) Current topics in membranes and transport, vol 6, pp 125–168

    Google Scholar 

  • Schatzmann HJ (1977) Role of magnesium in the (Ca+2+Mg+2)-stimulated membrane ATPase of human red blood cells. J Membr Biol 35:149–158

    Google Scholar 

  • Schatzmann HJ, Rossi GL (1971) (Ca2++Mg2+)-activated membrane ATPases in human red cells and their possible relations to cation transport. Biochim Biophys Acta 241:379–392

    Google Scholar 

  • Schatzmann HJ, Vincenzi FJ (1969) Calcium movements across the membrane of human red cells. J Physiol (Lond) 201:369–395

    Google Scholar 

  • Schinger Z, Naim E, Lasser M (1970) ATP-dependent calcium uptake by microsomal preparation from rat parotid and submaxillary glands. Biochim Biophys Acta 203:326–334

    Google Scholar 

  • Schneider WC, Hogeboom GH (1951) Cytochemical studies of mammalian tissues: the isolation of cell components by differential centrifugation: a review. Cancer Res 11:1–22

    Google Scholar 

  • Schneider WC, Hogeboom GH, Shelton E, Striebich MJ (1953) Enzymatic and chemical studies on the liver and liver mitochondria of rats fed 2-methyl-or 3′-methyl-4-dimethylaminoazobenzene. Cancer Res 13:285–288

    Google Scholar 

  • Schneyer LH, Schneyer CA (1965) Membrane potentials of salivary gland cells of rat. Am J Physiol 209:1304–1310

    Google Scholar 

  • Schotland J, Mela L (1977) Role of cyclic nucleotides in the regulation of mitochondrial calcium uptake and efflux kinetics. Biochem Biophys Res Commun 75:920–924

    Google Scholar 

  • Schraer R, Elder JA, Schraer H (1973) Aspects of mitochondrial function in calcium movement and calcification. Fed Proc 32:1938–1943

    Google Scholar 

  • Schreurs VVAM, Swarts HGP, De Pont JJHHM, Bontin SL (1976) Role of calcium in exocrine pancreatic secretion. II. Comparison of the effects of carbachol and the ionophore A-23187 on enzyme secretion and calcium movements in rabbit pancreas. Biochim Biophys Acta 419:320–330

    Google Scholar 

  • Schrier SL, Bensch KG, Johnson M, Junga I (1975) Energized endocytes in human erythrocyte ghosts. J Clin Invest 56:8–22

    Google Scholar 

  • Schudt C, Gaertner U, Pette D (1976) Insulin action on glucose transport and calcium fluxes in developing muscles cells in vitro. Eur J Biochem 689:103–111

    Google Scholar 

  • Schulman H, Greengard P (1978) Ca2+-dependent protein phosphorylation system in membranes from various tissues and its activation by “calcium-dependent regulator”. Proc Natl Acad Sci USA 75:5432–5436

    Google Scholar 

  • Schulz I, Kondo S, Sachs G, Milutinović S (1977) The role of Ca++ in pancreatic enzyme secretion. In: Bonfils S, Fromageot P, Rosselin G (eds) Hormonal receptors in digestive tract physiology. North Holland, Amsterdam, pp 275–288

    Google Scholar 

  • Schulz I, Stolze HH (1980) The exocrine pancreas: the role of secretagogues, cyclic nucleotides, and calcium in enzyme secretion. Annu Rev Physiol 42:127–156

    Google Scholar 

  • Schuster SM, Olson MS (1974) Studies of the energy-dependent uptake of divalent metal ions by beef heart mitochondria. J Biol Chem 249:7151–7158

    Google Scholar 

  • Sehlin J (1976) Calcium uptake by subcellular fractions of pancreatic islets: effects of nucleotides and theophylline. Biochem J 156:63–69

    Google Scholar 

  • Sekiya T (1962) Studies on the membrane potential of Ehrlich ascites tumor cell. Gann 53:41–57

    Google Scholar 

  • Selinger Z, Naim E, Lasser M (1970) ATP-dependent calcium uptake by microsomal preparation from rat parotid and submaxillary glands. Biochim Biophys Acta 203:326–334

    Google Scholar 

  • Silbergeld EK (1977) Na+ regulates release of Ca++ sequestered in synaptosomal mitochondria. Biochem Biophys Res Commun 77:464–469

    Google Scholar 

  • Simonsen L, Christoffersen GRJ (1979) Intracellular Ca2+ activity in Helix neurons: effects of extracellular Ca2+, H+, Na+ and N 3 . Comp Biochem Physiol (A) 63:615–618

    Google Scholar 

  • Singh M (1979) Calcium and cyclic nucleotide interaction in secretion of amylase from rat pancreas in vitro. J Physiol (Lond) 296:159–176

    Google Scholar 

  • Smith TC, Mikiten TM, Levinson C (1972) The effect of multivalent cations on the membrane potential of the Ehrlich ascites tumor cell. J Cell Physiol 79:117–126

    Google Scholar 

  • Soderling TR, Hickenbottom JP (1970) Inactivation of glycogen synthetase and activation of phosphorylase b kinase by the same cyclic 3′-5′-AMP dependent kinase. Fed Proc 29:601

    Google Scholar 

  • Solaro RJ (1972) Cardiac contractility: a problem in calcium conservation. Doctoral Thesis, Univ Pittsburgh School of Medicine

    Google Scholar 

  • Solaro RJ, Briggs FN (1974) Estimating the function capabilities of sarcoplasmic reticulum in cardiac muscle — calcium binding. Circ Res 34:531–540

    Google Scholar 

  • Sordahl LA (1974) Effect of magnesium, ruthenium red and the antibiotic ionophore A23187 on initial rates of calcium uptake by heart mitochondria. Arch Biochem Biophys 167:104–115

    Google Scholar 

  • Sorensen MM, DeMeis L (1977) Effects of anions, pH and magnesium on calcium accumulation and release by sarcoplasmic reticulum. Biochim Biophys Acta 465:210–223

    Google Scholar 

  • Sottocasa GL, Sandri G, Panfili E, de Bernard B (1971) A glycoprotein located in the membrane space of rat liver mitochondria. FEBS Lett 17:100–105

    Google Scholar 

  • Sottocasa GL, Sandri G, Panfili E, de Bernard B, Gazzotti P, Vasington FD, Carafoli E (1972) Isolation of a soluble Ca2+ binding glycoprotein from ox liver mitochondria. Biochem Biophys Res Commun 47:808–813

    Google Scholar 

  • Spencer T, Bygrave FL (1973) The role of mitochondria in modifying the cellular ionic environment: studies of the kinetic accumulation of calcium by rat liver mitochondria. Bioenergetics 4:347–362

    Google Scholar 

  • Sperelakis N (1962) Ca4 5 and Sr8 9 movements with contraction of depolarized smooth muscle. Am J Physiol 203:860–866

    Google Scholar 

  • Sperelakis N, Schneider JA (1976) A metabolic control mechanism for calcium ion influx that may protect the ventricular myocardial cell. Am J Cardiol 37:1079–1085

    Google Scholar 

  • Stahl WL, Swanson PD (1969) Uptake of calcium by subcellular fractions isolated from ouabain treated cerebral tissues. J Neurochem 16:1553–1563

    Google Scholar 

  • Stahl WL, Swanson PD (1971) Movements of calcium and other cations in isolated cerebral tissues. J Neurochem 18:415–427

    Google Scholar 

  • Stahl WL, Swanson PD (1972) Calcium movements in brain slices in low sodium or calcium media. J Neurochem 19:2395–2407

    Google Scholar 

  • Stallcup WB (1979) Sodium and calcium fluxes in a clonal nerve cell line. J Physiol (Lond) 286:525–540

    Google Scholar 

  • Steiner M, Tateishi T (1974) Distribution and transport of calcium in human platelets. Biochim Biophys Acta 367:232–246

    Google Scholar 

  • Steinhardt R, Zucker R, Schatten G (1977) Intracellular calcium release at fertilization in the sea urchin egg. Dev Biol 58:185–196

    Google Scholar 

  • Stern PH (1969) Inhibition by steroids of parathyroid hormone-induced 4 5Ca release from embryonic rat bone in vitro. J Pharmacol Exp Ther 168:211–217

    Google Scholar 

  • Stinnakre J, Tauc L (1973) Calcium influx in active Aplysia neurones detected by injected aequorin. Nature (New Biol) 242:113–115

    Google Scholar 

  • Streter FA (1969) Temperature, pH and seasonal dependence of Ca-uptake and ATPase activity of white and red muscle microsomes. Arch Biochem Biophys 134:25–33

    Google Scholar 

  • Striebich MJ, Shelton E, Schneider WC (1953) Quantitative morphological studies on the livers and liver homogenates of rats fed 2-methyl-or 3'methyl-4-dimethylaminoazobenzene. Cancer Res 13:279–284

    Google Scholar 

  • Strittmatter WJ, Hirata F, Axelrod J (1979) Increased Ca2+-ATPase activity associated with methylation of phospholipids in human erythrocytes. Biochem Biophys Res Commun 88:147–153

    Google Scholar 

  • Struyvenberg A, Morrison R, Relman A (1968) Acid-base balance of separated canine renal tubule cells. Am J Physiol 214:1155–1162

    Google Scholar 

  • Stucki JW, Ineichen EA (1974) Energy dissipation by calcium recycling and the efficiency of calcium transport in rat liver mitochondria. Eur J Biochem 48:365–375

    Google Scholar 

  • Studer RK (1978) The influence of hydrogen ion on calcium metabolism of renal cell. Ph.D. Thesis, University of Pittsburgh

    Google Scholar 

  • Studer RK, Borle AB (1979) Effect of pH on the calcium metabolism of isolated rat kidney cells. J Membr Biol 48:325–341

    Google Scholar 

  • Studer RK, Borle AB (1980) The effect of hydrogen ion on the kinetics of calcium transport by rat kidney mitochondria. Arch Biochem Biophys 203:707–718

    Google Scholar 

  • Sugden MC, Christie MR, Ashcroft SJH (1979) Presence and possible role of calcium-dependent regulator (calmodulin) in rat islets of Langerhans. FEBS Lett 105:95–100

    Google Scholar 

  • Suko J (1971) Alterations of Ca2+ uptake and Ca2+-activated ATPase of cardiac sarcoplasmic reticulum in hyper-and hypothyroidism. Biochim Biophys Acta 252:324–327

    Google Scholar 

  • Sulakhe PV, Drummond GI, Ng DC (1973) Calcium binding by skeletal muscle sarcolemma. J Biol Chem 248:4150–4157

    Google Scholar 

  • Sullivan WJ (1968) Electrical potential differences across distal renal tubules of Amphiuma. Am J Physiol 214:1096–1103

    Google Scholar 

  • Sutfin LV, Holtrop ME, Oglivie RE (1971) Microanalysis of individual mitochondrial granules with diameters less than 1000 angstroms. Science 174:947–949

    Google Scholar 

  • Swanson PD, Anderson L, Stahl WL (1974) Uptake of calcium ions by synaptosomes from rat brain. Biochim Biophys Acta 356:174–183

    Google Scholar 

  • Swift MR, Todaro GJ (1968) Membrane potential of human fibroblast strains in culture. J Cell Physiol 71:61–64

    Google Scholar 

  • Szasz I, Sarkodi B, Gardos G (1977) Mechanism of Ca2+-dependent selective rapid K+-transport induced by propranolol in red cells. J Membr Biol 35:75–93

    Google Scholar 

  • Szasz I, Sakardi B, Gardos G (1978) Mechanisms for passive calcium transport in human red cells. Acta Biochim Biophys Acta Sci Hung 13:239–242

    Google Scholar 

  • Tada M, Kirchberger MA, Repke DI, Katz AM (1974) The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3′5′-monophosphate-dependent protein kinase. J Biol Chem 249:6174–6180

    Google Scholar 

  • Tada M, Yamamoto T, Tonomura Y (1978) Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiol Rev 58:1–79

    Google Scholar 

  • Tashmukhamedov BA, Gagelgans AI, Mamatkulov K, Makhmodova EM (1972) Inhibition of Ca2+ transport in mitochondria by selective blockade of membrane mucopolysaccharides by hexamine cobaltichloride. FEBS Lett 28:239–242

    Google Scholar 

  • Ten Eick R, Nawrath H, McDonald TF, Trautwein W (1976) On the mechanism of the negative inotropic effect of acetylcholine. Pfluegers Arch 361:207–213

    Google Scholar 

  • Terepka AF, Stewart ME, Merkel U (1969) Transport functions of the chick chorioallantoic membrane. II. Active calcium transport in vitro. Exp Cell Res 58:107–117

    Google Scholar 

  • Thiers RE, Villee BL (1957) Distribution of metals in subcellular fractions of rat liver. J Biol Chem 226:911–920

    Google Scholar 

  • Thiers RE, Reynolds ES, Villee BL (1960) The effect of carbon tetrachloride poisoning on subcellular metal distribution in rat liver. J Biol Chem 235:2130–2133

    Google Scholar 

  • Thorens S (1979) Ca2+-ATPase and Ca uptake without requirement for Mg2+ in membrane fractions of vascular smooth muscle. FEBS Lett 98:177–180

    Google Scholar 

  • Thorens S, Haeusler G (1978) Effects of adenosine 3′:5′-monophosphate and guanosine 3′:5′-monophosphate on calcium uptake and phosphorylation in membrane fractions of vascular smooth muscle. Biochim Biophys Acta 512:415–428

    Google Scholar 

  • Thorne RFW, Bygrave FL (1975) Kinetic evidence for calcium-ion and phosphate-ion transport systems in mitochondria from Ehrlich ascites tumour cells. FEBS Lett 56:185–188

    Google Scholar 

  • Ting A, Lee JW, Vidaver GA (1979) Calcium transport by pigeon erythrocyte membrane vesicles. Biochim Biophys Acta 555:239–248

    Google Scholar 

  • Tobias JM, Agin DP, Pawlowski R (1962) The excitable system in the cell surface. Circulation 26:1145–1150

    Google Scholar 

  • Tower DB (1968) Ouabain and the distribution of calcium and magnesium in cerebral tissues in vitro. Exp Brain Res 6:273–283

    Google Scholar 

  • Trautwein W (1975) Membrane currents in cardiac muscle fibers. Physiol Rev 53:793–835

    Google Scholar 

  • Trotta EE, DeMeis L (1975) ATP-dependent calcium accumulation in brain microsomes. Enhancement by phosphate and oxalate. Biochim Biophys Acta 394:239–247

    Google Scholar 

  • Tsien RW (1977) Cyclic AMP and contractile activity in heart. Adv Cyclic Nucl Res 8:364–420

    Google Scholar 

  • Tsokos J, Sans R, Bloom S (1977) Ca2+ uptake by hyperpermeable mouse heart cells: effects of inhibitors of mitochondrial function. Life Sci 20:1913–1922

    Google Scholar 

  • Tsumura Y, Kagawa S, Yoshika K, Koboyashi K, Matsuoka A (1979) Insulin release and metabolism of calcium, adenine and adenine 3′-5′ cyclic monophosphate. Endoorinol Jpn 26:359–370

    Google Scholar 

  • Tupper JT, Zorgniotti F (1977) Calcium content and distribution as a function of growth and transformation in the mouse 3T3 cell. J Cell Biol 75:12–22

    Google Scholar 

  • Uchikawa T, Borle AB (1978a) Kinetic analysis of calcium desaturation curves from isolated kidney cells. Am J Physiol 234:R29–R33

    Google Scholar 

  • Uchikawa T, Borle AB (1978b) Studies of calcium-45 desaturation from kidney slices in flow-through chambers. Am J Physiol 234:R34–R38

    Google Scholar 

  • Umbreit W, Burris RH, Stauffer JF (1964) Manometric techniques, 4th ed. Burgess, Minneapolis, pp 132

    Google Scholar 

  • Vaes (1968) Parathyroid hormone-like action of N6-2′-0-dibutyryladenosine-3′,5′ (cyclic) monophosphate on bone explant in tissue culture. Nature 219:939–940

    Google Scholar 

  • Vallieres J, Scarpa A, Somlyo AP (1975) Subcellular fractions of smooth muscle. Isolation, substrate utilization and calcium transport by main pulmonary artery and mesenteric vein mitochondria. Arch Biochem Biophys 120:659–669

    Google Scholar 

  • Van Breemen C, Aaronson P, Loutzenhiser R (1978) Sodium calcium interactions in mammalian smooth muscle. Pharmacol Rev 30:167–208

    Google Scholar 

  • Van Breemen C, Daniel EE, Van Breemen D (1966) Calcium distribution and exchange in the rat uterus. J Gen Physiol 49:1265–1297

    Google Scholar 

  • Van Breemen C, Farinas BR, Casteels R, Gerba B, Wuytack F, Deth R (1973) Factors controlling cytoplasmic Ca2+ concentration. Philos Trans R Soc Lond (Biol) 265:57–71

    Google Scholar 

  • Van Breemen C, Farinas BR, Gerba P, McNaughton ED (1972) Excitation-contraction coupling in rabbit aorta studied by the lanthanum method for measuring cellular calcium influx. Circ Res 30:44–54

    Google Scholar 

  • Van Breemen C, McNaughton E (1970) The separation of cell membrane calcium transport from extracellular calcium exchange in vascular smooth muscle. Biochem Biophys Res Commun 39:567–574

    Google Scholar 

  • Van Breemen C, Hwang O, Siegel B (1977) The lanthanum method. In: Casteels R, Goodfraind T, Rüegg JC (eds) Excitation-contraction coupling in smooth muscle. Elsevier/North Holland, Amsterdam, pp 243–252

    Google Scholar 

  • Van Rossum GDV (1970) Net movements of calcium and magnesium in slices of rat liver. J Gen Physiol 55:18–32

    Google Scholar 

  • Van Rossum GVD, Gosalvez M, Galeotti T, Morris HP (1971) Net movements of monovalent and bivalent cations and their relation to energy metabolism in slices of hepatoma 3924A and of a mammary tumour. Biochim Biophys Acta 245:263–276

    Google Scholar 

  • Vasington FD, Gazzotti P, Tiozzo R, Carafoli E (1972) The effect of ruthenium red on Ca2+ transport and respiration in rat liver mitochondria. Biochim Biophys Acta 256:43–54

    Google Scholar 

  • Vasington FD, Greenawalt JW (1964) Ca++ and Pi uptake by non-phosphorylating mitochondrial preparations. Biochem Biophys Res Commun 15:133–138

    Google Scholar 

  • Vassalle M (1979) Electrogenesis of the plateau and pacemaker potential. Annu Rev Physiol 41:425–440

    Google Scholar 

  • Vassort G, Rougier O, Garnier D, Sanviat MP, Coraboeuf E, Gardouil YM (1969) Effects of adrenalin on membrane inward currents during the cardiac action potential. Pfluegers Arch 309:70–81

    Google Scholar 

  • Vaughan-Williams EM (1959) The effect of changes in extracellular potassium concentration on the intracellular potentials of isolated rabbit atria. J Physiol (Lond) 146:411–427

    Google Scholar 

  • Veloso D, Guynn RW, Oskarsson M, Veech I (1973) The concentration of free and bound magnesium in rat tissues. J Biol Chem 248:4811–4819

    Google Scholar 

  • Vincenzi FF (1971) A calcium pump in red cell membranes. In: Nichols G Jr, Wasserman RH (eds) Cellular mechanisms for calcium transfer and homeostasis. Academic Press, New York, pp 135

    Google Scholar 

  • Vincenzi FF (1979) Calmodulin in the regulation of intracellular calcium. Proc West Pharmacol Soc 22:289–294

    Google Scholar 

  • Vincenzi FF, Farrance ML (1977) Interaction between cytoplasmic (Ca2+ — Mg2+) ATPase activator and erythrocyte membrane. J Supramol Struc 7:301–306

    Google Scholar 

  • Vinogradov A, Scarpa A (1973) The initial velocities of calcium uptake by rat liver mitochondria. J Biol Chem 248:5527–5531

    Google Scholar 

  • Visscher MB, Lee YCP (1972) Calcium ions and the cardiotonic action of glucagon. Proc Natl Acad Sci 69:463–465

    Google Scholar 

  • Wallach S, Chausmer AB, Sherman BS (1971) Hormonal effects on calcium transport in liver. Clin Orthop 78:40–46

    Google Scholar 

  • Wallach S, Reizenstein DL, Bellavia JV (1966) The cellular transport of calcium in rat liver. J Gen Physiol 49:743–762

    Google Scholar 

  • Walling MW, Kimberg DV, Wasserman RH, Feinberg RR (1976) Duodenal active transport of calcium and phosphate in vitamin D-deficient rats; effects of nephrectomy, cestrum diurnum and 1α-25-dihydroxyvitamin D3. Endocrinology 98:1130–1134

    Google Scholar 

  • Walling MW, Rothman SS (1969) Phosphate independent, carrier-mediated active transport of calcium by rat intestine. Am J Physiol 217:1144–1148

    Google Scholar 

  • Walling MW, Rothman SS (1970) Apparent increase in carrier affinity for intestinal calcium transport following dietary calcium restriction. J Biol Chem 245:5007–5011

    Google Scholar 

  • Walsh DA, Krebs EG, Reimann EM, Brostrom MA, Corbin JD, Hickenbottom JP, Soderling TR, Perkins JP (1970) The receptor protein for cyclic AMP in the control of glycogenolysis. In: Greengard P, Costs E (eds) Role of cyclic AMP in cell function. Raven Press, New York, pp 265–285

    Google Scholar 

  • Walsh DA, Perkins JP, Krebs EG (1968) An adenosine 3′,5′-monophosphate-dependent protein kinase from rabbit skeletal muscle. J Biol Chem 243:3763–3774

    Google Scholar 

  • Wang JH, Waisman DM (1979) Calmodulin and its role in the second-messenger system. Curr Top Cell Regul 15:47–107

    Google Scholar 

  • Watlington CO, Burke PK Estep HL (1968) Calcium flux in isolated frog skin; the effect of parathyroid substance. Proc Soc Exp Biol Med 128:853–856

    Google Scholar 

  • Watson EL, Siegel IA (1978) Factors affecting calcium accumulation and release in canine submandibular salivary microsomes. Arch Oral Biol 23:323–328

    Google Scholar 

  • Webb RC, Bhalla RC (1976) Calcium sequestration by subcellular fractions isolated from vascular smooth muscle: effect of cyclic nucleotides and prostaglandins. J Mol Cell Cardiol 8:145–147

    Google Scholar 

  • Weber AM (1966) Energized calcium transport and relaxing factor. Curr Top Bioenerg 1:203–254

    Google Scholar 

  • Weber A, Herz R, Reiss I (1966) Study of the kinetics of calcium transport by isolated fragmented sarcoplasmic reticulum. Biochem Z 345:329–369

    Google Scholar 

  • Weibel ER, Stäubli W, Gnägi HR, Hess FA (1969) Correlated morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods and normal morphometric data for rat liver. J Cell Biol 42:68–91

    Google Scholar 

  • Weinbach EC, Von Brand T (1965) The isolation and composition of dense granules from Ca++-loaded mitochondria. Biochem Biophys Res Commun 19:133–137

    Google Scholar 

  • Weiner ML, Lee KS (1972) Active calcium ion uptake by inside-out and right-side-out vesicles of red blood cell membranes. J Gen Physiol 59:462–475

    Google Scholar 

  • Weiss GB, Goodman FR (1969) Effects of lanthanum on contraction, calcium distribution and 45Ca movements in intestinal smooth muscle. J Pharmacol Exp Ther 169:46–55

    Google Scholar 

  • Weller M, Laing W (1979) The effect of cyclic nucleotides and protein phosphorylation on calcium permeability and binding in the sarcoplasmic reticulum. Biochim Biophys Acta 551:406–419

    Google Scholar 

  • Wendt IR, Langer GA (1977) The sodium-calcium relationship in mammalian myocardium: effect of sodium deficient perfusion on calcium fluxes. J Mol Cell Cardiol 9:551–564

    Google Scholar 

  • Wester PO (1965) Concentration of 17 elements in subcellular fractions of beef heart tissue determined by neutron activation. Biochim Biophys Acta 109:268–283

    Google Scholar 

  • Whitfield JF, MacManus JP, Gilland DJ (1971) Inhibition by thyrocalcitonin (calcitonin) of the cyclic AMP-mediated stimulation of thymocyte proliferation by epinephrine. Horm Metab Res 3:348–351

    Google Scholar 

  • Whitney RB, Sutherland RM (1972) Enhanced uptake of calcium by transforming lymphocytes. Cell Immunol 5:137–147

    Google Scholar 

  • Whitney RB, Sutherland RM (1973) Characteristics of calcium accumulation by lymphocytes and alterations in the process induced by phytohemagglutinin. J Cell Physiol 82:9–20

    Google Scholar 

  • Whittembury G, Windhager E (1961) Electrical potential difference measurements in perfused single proximal tubule of Necturus kidney. J Gen Physiol 44:679–687

    Google Scholar 

  • Wikström M, Ahonen P, Luukkainen T (1975) The role of mitochondria in uterine contraction. FEBS Lett 56:120–123

    Google Scholar 

  • Williams AJ, Barrie SE (1978) Temperature effects on the kinetics of calcium transport by cardiac mitochondria. Biochem Biophys Res Commun 84:89–94

    Google Scholar 

  • Williams JA (1966) Effect of external K+ concentration on transmembrane potentials of rabbit thyroid cells. Am J Physiol 211:1171–1174

    Google Scholar 

  • Williams JA (1970) Origin of transmembrane potentials in non-excitable cells. J Theor Biol 28:287–296

    Google Scholar 

  • Winegrad S, Shanes AM (1962) Calcium flux and contractility in guinea pig atria. J Gen Physiol 45:371–394

    Google Scholar 

  • Wolf HU (1970) Purification of the Ca2+ dependent ATPase of human erythrocyte membranes. Biochim Biophys Acta 219:521–524

    Google Scholar 

  • Wolf HU (1972) Studies on a Ca2+ dependent ATPase of human erythrocyte membranes. Effects of Ca2+ and H+. Biochim Biophys Acta 266:361–375

    Google Scholar 

  • Wollheim CB, Kikuchi M, Renold AE (1978) The roles of intracellular and extracellular Ca++ in glucose-stimulated biphasic insulin release by rat islets. J Clin Invest 62:451–458

    Google Scholar 

  • Wong GL, Luben RA, Cohn DV (1977) 1,25-dihydroxycholecalciferol and parathormone: effects on isolated osteoclast-like and osteoblast-like cells. Science 197:663–665

    Google Scholar 

  • Wood JM, Schwartz A (1978) Effects of ouabain on calcium-45 flux in guinea pig cardiac tissue. J Mol Cell Cardiol 10:137–144

    Google Scholar 

  • Woodbury DM, Woodbury JW (1963) Correlation of micro-electrode potential recordings with histology of rat and guinea pig thyroid glands. J Physiol (Lond) 169:553–567

    Google Scholar 

  • Worsfold W, Peter JB (1970) Kinetics of calcium transport by fragmented sarcoplasmic reticulum. J Biol Chem 245:5545–5552

    Google Scholar 

  • Wrenn RW, Biddulph DM (1979a) Parathyroid hormone-induced calcium efflux from isolated renal cortical tubules — evidence for cyclic AMP mediation. Mol Cell Endocrinol 15:29–40

    Google Scholar 

  • Wrenn RW, Biddulph DM (1979b) Correlation between cyclic AMP levels and calcium efflux in isolated renal cortical tubules. J Cyclic Nucleotide Res 5:239–250

    Google Scholar 

  • Wright FS (1971) Increasing magnitude of electrical potential along the renal tubule. Am J Physiol 220:624–638

    Google Scholar 

  • Yamaguchi M, Takei Y, Yamamoto T (1975) Effect of thyrocalcitonin on calcium concentration in liver of intact and thyroparathyroidectomized rats. Endocrinology 96:1004–1008

    Google Scholar 

  • Yamaguchi M (1979) Effect of calcitonin on Ca-ATPase activity of plasma membrane in liver of rats. Endocrinol Jpn 26:605–609

    Google Scholar 

  • Yamazaki RK (1975) Glucagon stimulation of mitochondrial respiration. J Biol Chem 250:7924–7930

    Google Scholar 

  • Yasamura S (1976) Effect of adrenal steroids on bone resorption in rat. Am J Physiol 230:90–93

    Google Scholar 

  • Yeung WK, Weisman G, Vidaver GA (1979) active Ca2+ transport by vesicle reconstituted from Triton X-100-solubilized pigeon erythrocyte membrane. Biochim Biophys Acta 555:249–288

    Google Scholar 

  • Yonaga T, Morimoto S (1979) A calcitonin-like action of prostaglandin E-1. Prostaglandins 17:801–820

    Google Scholar 

  • Zadunaisky JA, Lande MA (1972) Calcium content and exchange in amphibian skin and its isolated epithelium. Am J Physiol 222:1309–1315

    Google Scholar 

  • Zadunaisky JA, Gennaro JF Jr, Bashirelahi N, Hilton M (1968) Intracellular redistribution of sodium and calcium during stimulation of sodium transport in epithelial cells. J Gen Physiol 51:290–302

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag

About this chapter

Cite this chapter

Borle, A.B. (1981). Control, modulation, and regulation of cell calcium. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 90. Reviews of Physiology, Biochemistry and Pharmacology, vol 90. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0034078

Download citation

  • DOI: https://doi.org/10.1007/BFb0034078

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10657-9

  • Online ISBN: 978-3-540-38616-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics