Skip to main content

Modeling Radiative Transfer through Forest Canopies: Implications for Canopy Photosynthesis and Remote Sensing

  • Chapter

Part of the book series: Forestry Sciences ((FOSC,volume 50))

Abstract

In order to theoretically describe the radiative transfer inside a forest canopy, information must be obtained on the following basic geometrical and optical characteristics: the geometrical cross section of foliage elements, three-dimensional distribution of their area volume density and the phase function. In coniferous trees and stands, it is reasonable to consider one-yr-old shoots main foliage elements. Theoretical problems related to the determination of optical parameters in the hierarchical levels of needle, shoot, crown and canopy are discussed and a few examples demonstrating the structural and optical complexities of forest communities are presented. A brief description of the basic components of a new forest ecosystem radiation model and some examples of the results obtained are given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asrar, G. (ed). 1989. Theory and Applications of Optical Remote Sensing. — J. Wiley and Sons, New York. 734 pp.

    Google Scholar 

  • Borel-Donohue, C.C. 1988. “Models for backscattering of millimeter waves from vegetation canopies.” — Ph.D. thesis, University of Massachusetts, Boston.

    Google Scholar 

  • Brakke, T.W. 1994. Specular and diffuse components of radiation scattered by leaves. — Agric. For. Meteorol. 71: 283–295.

    Article  Google Scholar 

  • Brakke, T.W., Smith, J.A. and Harnden, J.M. 1989. Bidirectional scattering of light from tree leaves. — Rem. Sens. Environ. 29: 175–183.

    Article  Google Scholar 

  • Carter, G.A. and Smith, W.K. 1985. Influence of shoot structure on light interception and photosynthesis in conifers. — Plant Physiol. 79: 1038–1043.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J.M. and Black, T.A. 1991. Measuring leaf area index of plant canopies with branch architecture. — Agric. For. Meteorol. 57: 1–12.

    Article  Google Scholar 

  • Chen, J.M. and Black, T.A. 1992. Defining leaf area index for non-flat leaves. — Plant Cell Environ. 15: 421–429.

    Article  Google Scholar 

  • Chen, J.M., Black, T.A. and Adams, R.S. 1991. Evaluation of hemispherical photography in determining plant area index and geometry of a forest stand. — Agric. For. Meteorol. 56: 129–143.

    Article  CAS  Google Scholar 

  • Gerstl, S.W. and Borel-Donohue, C.C. 1992. Principles of the radiosity method versus radiative transfer for canopy reflectance modeling. — Trans. Geosci. Rem. Sens. 30: 271–275.

    Article  Google Scholar 

  • Goel, N.S. 1988. Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data. — Rem. Sens. Rev. 4: 1–212.

    Article  Google Scholar 

  • Goel, N.S. and Norman, J.M. (eds). 1990. Instrumentation for studying vegetation canopies for remote sensing in optical and thermal infrared regions. — Rem. Sens. Rev. 5(1): 1–360.

    Google Scholar 

  • Gower, S.T. and Norman, J.M. 1991. Rapid estimation of leaf area index in conifer and broad-leaf stands using the LI-COR LAI-2000. — Ecology 72: 1896–1900.

    Article  Google Scholar 

  • Gutschick, V.P. 1991. Joining leaf photosynthesis models and canopy photon-transport models.–In: Myneni, R.B. and Ross, J. (eds). Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology. Springer-Verlag, Berlin, pp. 504–535.

    Google Scholar 

  • Hari, P., Kaipiainen, L., Korpilahti, E., Mäkelä, A., Nilson, T., Oker-Blom, P., Ross, J. and Salminen, R. 1985. Structure, radiation and photosynthetic productivity in coniferous stands. — Research Notes 54, Department of Silviculture, University of Helsinki. 233 pp.

    Google Scholar 

  • Hari, P., Korpilahti, E., Pohja, T. and Räsänen, P. 1990. A field system for measuring the gas exchange of forest trees. — Silva Fenn. 24: 21–27.

    Google Scholar 

  • Jacquemoud, S. and Baret, F. 1990. A model of leaf optical properties spectra. — Rem. Sens. Environ. 34: 75–91.

    Article  Google Scholar 

  • Jupp, D.L.B. and Walker, J. 1996. Detecting structural and growth changes in woodlands and forests: The challenge for remote sensing and the role of geometric optical modelling. — In: Gholz, H.L., Nakane, K. and Shimoda, H. (eds). The Use of Remote Sensing in the Modeling of Forest Productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 75–108.

    Google Scholar 

  • Koop, H. 1989. Forest dynamics. SILVI-STAR: A Comprehensive Monitoring System. — Springer-Verlag, Berlin. 229 pp.

    Google Scholar 

  • Kuusk, A. 1991. The hot spot effect in plant canopy reflectance. — In: Myneni, R.B. and Ross, J. (eds). Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology. Springer-Verlag, Berlin, pp. 139–159.

    Chapter  Google Scholar 

  • Kuusk, A. 1994. A multispectral canopy reflectance model. — Rem. Sens. Environ. 50: 75–82.

    Article  Google Scholar 

  • Li, X. and Strahler, A.H. 1985. Geometric-optical modeling of a conifer forest canopy. — Trans. Geosci. Rem. Sens. 23: 705–721.

    Article  Google Scholar 

  • Moldau, H. 1965. On the use of polarized radiation to analyse the reflection indicatrixes of leaves. — In: Investigations on Atmospheric Physics 7: Questions of Radiation Regime of Plant Stand (in Russian). Academy of Sciences ESSR, Institute of Physics and Astronomy, Tartu, Estonia, pp. 96–101.

    Google Scholar 

  • Myneni, R.B. and Ross, J. (eds). 1991. Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology. — Springer-Verlag, Berlin, 565 pp.

    Google Scholar 

  • Myneni, R.B., Ross, J. and Asrar, G. 1989. A review on the theory of photon transport in leaf canopies. — Agric. For. Meteorol. 45: 1–153.

    Article  Google Scholar 

  • Nilson, T. 1991. Approximate analytical methods for calculating the reflection functions of leaf canopies in remote sensing applications. — In: Myneni, R.B. and Ross, J. (eds). Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology. Springer-Verlag, Berlin, pp. 161–190.

    Chapter  Google Scholar 

  • Nilson, T. 1992. Radiative transfer in nonhomogeneous plant canopies. — In: Stanhill, G. (ed). Advances in Bioclimatology 1. Springer-Verlag, Berlin, pp. 60–88.

    Google Scholar 

  • Nilson, T. and Kuusk, A. 1989. A reflectance model for the homogeneous plant canopy and its inversion. — Rem. Sens. Environ. 27: 157–167.

    Article  Google Scholar 

  • Nilson, T. and Peterson, U. 1991. A forest canopy reflectance model and a test case. — Rem. Sens. Environ. 37: 131–142.

    Article  Google Scholar 

  • Nilson, T. and Peterson, U. 1994. Age dependence of forest reflectance: Analysis of main driving factors. — Rem. Sens. Environ. 48: 319–331.

    Article  Google Scholar 

  • Norman, J.M. and Jarvis, P. 1975. Photosynthesis in sitka spruce (Picea sitchensis (Bong.) Carr.). Part 5. Radiation penetration and a test case. — J. Appl. Ecol. 12: 839–878.

    Article  Google Scholar 

  • Oker-Blom, P. 1986. Irradiance distribution and photosynthesis of a Scots pine shoot as influenced by shoot structure and solar radiation field geometry. — In: Fujimori, T. and Whitehead, D. (eds). Crown and Canopy Structure in Relation to Productivity. Forestry and Forest Products Research Institute, Ibaraki, Japan, pp. 382–395.

    Google Scholar 

  • Oker-Blom, P. and Smolander, H. 1988. The ratio of shoot silhouette area to total needle area in Scots pine. — For. Sci. 34: 894–906.

    Google Scholar 

  • Oker-Blom, P., Kotisaari, A., Kellomäki, S., Ross, J. and Smolander, H. 1986. Crown projection area of young Pinus sylvestris: A model and its test. — Scand. J. For. Res. 1: 67–74.

    Article  Google Scholar 

  • Oker-Blom, P., Lappi, J. and Smolander, H. 1991. Radiation regime and photosynthesis of coniferous stands. — In: Myneni, R.B. and Ross, J. (eds). Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology. Springer-Verlag, Berlin, pp. 469–499.

    Chapter  Google Scholar 

  • Pfreundt, J. 1988. Modellierung der räumlichen Verteilung von Strahlung, Photosynthesekapazität und Produktion in einem Fichtebestand und ihrer Bezeihung zur Bestandsstruktur. — Univ. Göttingen, Berichte des Forhungszentrums Waldökosysteme/Waldsterben, Reiche A, Bd. 39. 163 pp.

    Google Scholar 

  • Ross, J. 1981. The Radiation Regime and Architecture of Plant Stands. — D.R. Junk Publishers, The Hague, The Netherlands. 391 pp.

    Book  Google Scholar 

  • Ross, J. and Marshak, A. 1991. Monte Carlo methods. — In: Myneni, R.B. and Ross, J. (eds). Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology. Springer-Verlag, Berlin, pp. 442–467.

    Google Scholar 

  • Ross, J., Meinander, O. and Sulev, M. 1994. Spectral scattering properties of Scots pine shoots. — In: Proceedings of the IGARSS ′94 Symposium, August 8–12, 1994, California Institute of Technology, Pasadena, CA, Vol. 2, pp. 1451–1454.

    Google Scholar 

  • Ross, J., Stenberg, P., Berninger, F. and Hari, P. 1995. The influence of shoot architecture on net photosynthesis. — In: Hari, P., Ross, J. and Mecke, M. (eds). Production process of Scots pine: Geographical variation and models. Acta For. Fenn. (in press).

    Google Scholar 

  • Smith, N.J., Chen, J.M. and Black, T.A. 1993. Effects of clumping on estimates of stand leaf area index using the LI-COR LAI-2000. — Can. J. For. Res. 23: 1940–1943.

    Article  Google Scholar 

  • Smolander, H., Oker-Blom, P., Ross, J., Kellomäki, S. and Lahti, T. 1987. Photosynthesis of a Scots pine shoot: Test of a shoot photosynthesis model in a direct radiation field. — Agric. For. Meteorol. 39: 67–80.

    Article  Google Scholar 

  • Stenberg, P., Linder, S., Smolander, H. and Flower-Ellis, J. 1994. Performance of the LAI-2000 plant canopy analyzer in estimating leaf area index of some Scots pine stands. — Tree Physiol. 14: 981–985.

    Article  PubMed  Google Scholar 

  • Van de Hulst, H.C. 1981. Light Scattering by Small Particles. — Dover Publishers, New York. 470 pp.

    Google Scholar 

  • Vanderbilt, V.C., Grant, L. and Ustin, S.L. 1991. Polarization of light by vegetation. — In: Myneni, R.B. and Ross, J. (eds). Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology. Springer-Verlag, Berlin, pp. 191–228.

    Chapter  Google Scholar 

  • Walter-Shea, E.A. and Norman, J.M. 1991. Leaf optical properties. — In: Myneni, R.B. and Ross, J. (eds). Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology. Springer-Verlag, Berlin, pp. 229–251.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nilson, T., Ross, J. (1997). Modeling Radiative Transfer through Forest Canopies: Implications for Canopy Photosynthesis and Remote Sensing. In: Shimoda, H., Gholz, H.L., Nakane, K. (eds) The Use of Remote Sensing in the Modeling of Forest Productivity. Forestry Sciences, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5446-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5446-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6290-9

  • Online ISBN: 978-94-011-5446-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics