Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 30))

Abstract

In this paper we shall provide a brief survey of the work begun by L. J. Rogers and W. N. Bailey which has led to an iterative method for producing infinite chains of (q-series identities. Apart from providing the reader with leads to the study of previous accomplishments, we shall emphasize the importance of examination of the seminal works in order to discern topics open to further development. This will lead us directly to a new construct: the Bailey tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. E. Andrews, On the q-analog of Rummer’s theorem and applications, Duke Math. J. 40 (1973), 525–528.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. E. Andrews, An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc. Nat. Acad. Sci. USA 71 (1974), 4082–4085.

    Article  MATH  Google Scholar 

  3. G. E. Andrews, Problems and prospects for basic hypergeometric functions in: “Theory and Applications of Special Functions”, R. Askey, ed., Academic Press, New York, 1975, pp. 191–224.

    Google Scholar 

  4. G. E. Andrews, The Theory of Partitions, Encyl. of Math. and Its Appl., Vol. 2, Addison-Wesley, Reading, 1976; Reissued: Cambridge University Press, Cambridge, 1985 and 1998.

    Google Scholar 

  5. G. E. Andrews, Multiple series Rogers-Ramanujan type identities, Pacific J. Math. 114 (1984), 267–283.

    MathSciNet  MATH  Google Scholar 

  6. G. E. Andrews, The fifth and seventh order mock theta functions, Trans. Amer. Math. Soc. 293 (1986), 113–134.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. E. Andrews, q-Series: Their Development, CBMS Regional Conf. Lecture Series 66, Amer. Math. Soc, Providence, 1986.

    Google Scholar 

  8. G. E. Andrews, Umbral calculus, Bailey chains and pentagonal number theorems, J. Comb. Theory, Ser. A, 91 (2000), 464–475.

    Article  MATH  Google Scholar 

  9. G. E. Andrews and A. Berkovich, A trinomial analogue of Bailey’s lemma and N = 2 superconformai invariance, Comm. in Math. Phys. 192 (1998), 245–260.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. E. Andrews and D. Bowman, The Bailey transform and D. B. Sears, Quaest. Math. 22 (1999), 19–26.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. E. Andrews, F. J. Dyson and D. Hickerson, Partitions and indefinite quadratic forms, Invent. Math. 91 (1988), 391–407.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. E. Andrews, A. Schilling and S. O. Warnaar, An A 2 Bailey Lemma and Rogers-Ramanujan-type identities, J. Amer. Math. Soc. 12 (1999), 677–702.

    Article  MathSciNet  MATH  Google Scholar 

  13. W. N. Bailey, Some identities in combinatory analysis, Proc. London Math. Soc. (2) 49 (1947), 421–435.

    Article  MathSciNet  MATH  Google Scholar 

  14. W. N. Bailey, A transformation of nearly-poised basic hypergeometric series, J. London Math. Soc. 22 (1947), 237–240.

    Article  MathSciNet  MATH  Google Scholar 

  15. W. N. Bailey, Identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 50 (1949), 1–10.

    Article  Google Scholar 

  16. A. Berkovich, B. M. McCoy and A. Schilling, N = 2 supersymmetry and Bailey pairs, Phys. A 228 (1996), 33–62.

    MathSciNet  Google Scholar 

  17. J. M. and P. B. Borwein, Pi and the AGM, Wiley, New York, 1987.

    MATH  Google Scholar 

  18. D. M. Bressoud, Some identities for terminating q-series, Math. Proc. Camb. Phil. Soc. 81 (1981), 211–223.

    Article  MathSciNet  Google Scholar 

  19. D. M. Bressoud, An easy proof of the Rogers-Ramanujan identities, J. Number Theory 16 (1983), 235–241.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. M. Bressoud, A matrix inverse, Proc. Amer. Math. Soc. 88 (1983), 446–448.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. M. Bressoud, The Bailey lattice: an introduction, in: “Ramanujan Revisited”, G. E. Andrews et al, eds., Academic Press, New York 1988, pp. 57–67.

    Google Scholar 

  22. O. Foda and V.-H. Iuano, Virasoro character identities from the Andrews-Bailey construction, Int. J. Mod. Phys. A 12 (1997), 1651–1676.

    Article  MATH  Google Scholar 

  23. G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyl. of Math and Its Appl., Vol. 35, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  24. F. H. Jackson, Summation of q-hypergeometric series, Messenger of Math. 50 (1921), 101–112.

    Google Scholar 

  25. G. M. Lilly and S. C. Milne, The A l and C l Bailey transform and lemma, Bull. Amer. Math. Soc. (NS) 26 (1992), 258–263.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. M. Lilly and S. C. Milne, The C l Bailey transform and Bailey lemma, Constr. Approx. 9 (1993), 473–500.

    Article  MathSciNet  MATH  Google Scholar 

  27. G. M. Lilly and S. C. Milne, Consequences of the A l and Ct Bai l ley transform and Bailey lemma, Discr. Math. 139 (1995), 319–346.

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Paule, On identities of the Rogers-Ramanujan type, J. Math. Anal. and Appl. 107 (1985), 225–284.

    Article  MathSciNet  Google Scholar 

  29. P. Paule, The concept of Bailey chains, Sem. Lothar. Combin. B, 18f (1987), 24.

    Google Scholar 

  30. L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. 25 (1894), 318–343.

    Article  Google Scholar 

  31. L. J. Rogers, On two theorems of combinatory analysis and allied identities, Proc. London Math. Soc. (2) 16 (1917), 315–336.

    MATH  Google Scholar 

  32. A. Schilling and S. O. Warnaar, A higher-level Bailey lemma, Int. J. Mod. Phys., B11 (1997), 189–195.

    MathSciNet  Google Scholar 

  33. A. Schilling and S. O. Warnaar, A higher level Bailey lemma, proof and application, Ramanujan journal 2 (1998), 327–349.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Schilling and S. O. Warnaar, Conjugate Bailey pairs, to appear.

    Google Scholar 

  35. D. B. Sears, On the transformation theory of basic hypergeometric functions, Proc. London Math. Soc. (2) 53 (1951), 158–180.

    Article  MathSciNet  MATH  Google Scholar 

  36. L. J. Slater, A new proof of Rogers’ transformations of infinite series, Proc. London Math. Soc. (2) 53 (1951), 460–475.

    Article  MathSciNet  MATH  Google Scholar 

  37. L. J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54 (1952), 147–167.

    Article  MathSciNet  MATH  Google Scholar 

  38. L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.

    MATH  Google Scholar 

  39. O. Warnaar, A note on the trinomial analogue of Bailey’s lemma, J. Combin. Theory A 81 (1998), 114–118.

    Article  MathSciNet  MATH  Google Scholar 

  40. O. Warnaar, 50 years of Bailey’s lemma, Kerber Festschrift, to appear.

    Google Scholar 

  41. G. N. Watson, A new proof of the Rogers-Ramanujan identities, J. London Math. Soc., 4 (1929) pp. 4–9.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Andrews, G.E. (2001). Bailey’s Transform, Lemma, Chains and Tree. In: Bustoz, J., Ismail, M.E.H., Suslov, S.K. (eds) Special Functions 2000: Current Perspective and Future Directions. NATO Science Series, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0818-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0818-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7120-5

  • Online ISBN: 978-94-010-0818-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics