Skip to main content

Alternative DNA Base Pairing through Metal Coordination

  • Chapter
  • First Online:

Part of the book series: Metal Ions in Life Sciences ((MILS,volume 10))

Abstract

Base-pairing in the naturally occurring DNA and RNA oligonucleotide duplexes is based on π-stacking, hydrogen bonding, and shape complementarity between the nucleobases adenine, thymine, guanine, and cytosine as well as on the hydrophobic-hydrophilic balance in aqueous media. This complex system of multiple supramolecular interactions is the product of a long-term evolutionary process and thus highly optimized to serve its biological functions such as information storage and processing. After the successful implementation of automated DNA synthesis, chemists have begun to introduce artificial modifications inside the core of the DNA double helix in order to study various aspects of base pairing, generate new base pairs orthogonal to the natural ones, and equip the biopolymer with entirely new functions. The idea to replace the hydrogen bonding interactions with metal coordination between ligand-like nucleosides and suitable transition metal ions culminated in the development of a plethora of artificial base-pairing systems termed “metal base-pairs” which were shown to strongly enhance the DNA duplex stability. Furthermore, they show great potential for the use of DNA as a molecular wire in nanoscale electronic architectures. Although single electrons have proven to be transmitted by natural DNA over a distance of several base pairs, the high ohmic resistance of unmodified oligonucleotides was identified as a serious obstacle. By exchanging some or all of the Watson-Crick base pairs in DNA with metal complexes, this problem may be solved. In the future, these research efforts are supposed to lead to DNA-like materials with superior conductivity for nano-electronic applications. Other fields of potential application such as DNA-based supramole­cular architecture and catalysis may be strongly influenced by these developments as well. This text is meant to illustrate the basic concepts of metal-base pairing and give an outline over recent developments in this field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H. Lodish, A. Berk, S. L. Zipursky, P. Matzudaira, D. Baltimore, J. Darnell, Molecular Cell Biology, 6th edn, WH Freeman and Co, New York, 2007.

    Google Scholar 

  2. (a) S. Jäger, G. Rasched, H. Kornreich-Leshem, M. Engeser, O. Thum, M. Famulok, J. Am. Chem. Soc. 2005, 127, 15071; (b) P. M. E. Gramlich, C. T. Wirges, J. Gierlich, T. Carell, Org. Lett. 2008, 10, 249.

    Google Scholar 

  3. (a) F. A. Aldaye, A. Palmer, H. F. Sleiman, Science 2008, 321, 1795; (b) U. Feldkamp, C. M. Niemeyer, Angew. Chem. Int. Ed. 2006, 45, 1856; (c) M. Endo, H. Sugiyama, ChemBioChem 2009, 10, 2420; (d) F. C. Simmel, Angew. Chem. Int. Ed. 2008, 47, 5884; (e) F. A. Aldaye, P. K. Lo, P. Karam, C. K. Mclaughlin, G. Cosa, H. F. Sleiman, Nat. Nanotechnol. 2009, 4, 349; (f) A. Heckel, M. Famulok, Biochimie 2008, 90, 1096.

    Google Scholar 

  4. G. E. Moore, Electronics 1965, 38, 114.

    Google Scholar 

  5. (a) C. M. Niemeyer, Angew. Chem. Int. Ed. 2001, 40, 4128; (b) K. V. Gothelf, T. H. LaBean, Org. Biomol. Chem. 2005, 3, 4023; (c) J. Wengel, Org. Biomol. Chem. 2004, 2, 277; (d) J. J. Storhoff, C. A. Mirkin, Chem. Rev. 1999, 99, 1849; (e) T. Nguyen, A. Brewer, E. Stulz, Angew. Chem. Int. Ed. 2009, 48, 1974; (f) M. D. Sorensen, M. Petersen, J. Wengel, Chem. Comm. 2003, 2130; (g) D. J. Hurley, Y. Tor, J. Am. Chem. Soc. 1998, 120, 2194.

    Google Scholar 

  6. (a) F. Seela, Y. He, J. Org. Chem. 2003, 68, 367; (b) S. A. Benner, Acc. Chem. Res. 2004, 37, 784.

    Google Scholar 

  7. A. T. Krueger, E. T. Kool, Chem. Biol. 2009, 16, 242.

    Article  CAS  PubMed  Google Scholar 

  8. A. Okamoto, K. Kanatani, I. Saito, J. Am. Chem. Soc. 2004, 126, 4820.

    Article  CAS  PubMed  Google Scholar 

  9. (a) N. C. Seeman, Nature 2003, 421, 427; (b) N. C. Seeman, Int. J. Nanotechnol. 2005, 2, 348.

    Google Scholar 

  10. H. T. Maune, S. Han, R. D. Barish, M. Bockrath, W. A. Goddard III, P. W. K. Rothemund, E. Winfree, Nat. Nanotechnol. 2010, 5, 61.

    Article  CAS  PubMed  Google Scholar 

  11. P. W. K. Rothemund, Nature 2006, 440, 297.

    Article  CAS  PubMed  Google Scholar 

  12. H. Yan, Science 2004, 306, 2048.

    Article  CAS  PubMed  Google Scholar 

  13. A. Somoza, Angew. Chem. Int. Ed. 2009, 48, 9406.

    Article  CAS  Google Scholar 

  14. S. M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf, W. M. Shih, Nature 2009, 459, 414.

    Article  CAS  PubMed  Google Scholar 

  15. E. S. Andersen, M. Dong, M. M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh, M. M. Golas, B. Sander, H. Stark, C. L. P. D. Oliveira, J. S. Pedersen, V. Birkedal, F. Besenbacher, K. V. Gothelf, J. Kjems, Nature 2009, 459, 73.

    Article  CAS  PubMed  Google Scholar 

  16. (a) X. Guo, A. A. Gorodetsky, J. Hone, J. K. Barton, C. Nuckolls, Nat. Nanotechnol. 2008, 3, 163; (b) R. Mas-Balleste, O. Castillo, P. J. Sanz Miguel, D. Olea, J. Gomez-Herrero, F. Zamora, Eur. J. Inorg. Chem. 2009, 2885.

    Google Scholar 

  17. (a) C. J. Murphy, M. R. Arkin, T. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, J. K. Barton, Science 1993, 262, 1025; (b) S. Breeger, M. von Meltzer, U. Hennecke, T. Carell, Chem. Eur. J. 2006, 12, 6469; (c) B. Elias, J. C. Genereux, J. K. Barton, Angew. Chem. Int. Ed. 2008, 47, 9067.

    Google Scholar 

  18. C. M. Niemeyer, M. Adler, Angew. Chem. Int. Ed. 2002, 41, 3779.

    Article  CAS  Google Scholar 

  19. (a) G. H. Clever, C. Kaul, T. Carell, Angew. Chem. Int. Ed. 2007, 46, 6226; (b) G. H. Clever, M. Shionoya, Coord. Chem. Rev. 2010 , 254, 2391.

    Google Scholar 

  20. (a) A. Rakitin, P. Aich, C. Papadopoulos, Y. Kobzar, A. S. Vedeneev, J. S. Lee, J. M. Xu, Phys. Rev. Lett. 2001, 86, 3670; (b) P. Aich, S. L. Labiuk, L. W. Tari, L. J. T. Delbaere, W. J. Roesler, K. J. Falk, R. P. Steer, J. S. Lee, J. Mol. Biol. 1999, 294, 477.

    Google Scholar 

  21. S. Nokhrin, M. Baru, J. S. Lee, Nanotechnology 2007, 18, 095205.

    Article  Google Scholar 

  22. (a) S. Katz, J. Am. Chem. Soc. 1952, 74, 2238; (b) S. Katz, Biochim. Biophys. Acta 1963, 68, 240.

    Google Scholar 

  23. (a) E. Buncel, C. Boone, H. Joly, R. Kumar, A. R. J. Norris, Inorg. Biochem. 1985, 25, 61; (b) Z. Kuklenyik, L. G. Marzilli, Inorg. Chem. 1996, 35, 5654.

    Google Scholar 

  24. (a) A. Ono, H. Togashi, Angew. Chem. Int. Ed. 2004, 43, 4300; (b) Y. Miyake, H. Togashi, M. Tashiro, H. Yamaguchi, S. Oda, M. Kudo, Y. Tanaka,Y. Kondo, R. Sawa, T. Fujimoto, T. Machinami, A. Ono, J. Am. Chem. Soc. 2006, 128, 2172; (c) Y. Tanaka, S. Oda, H. Yamaguchi, Y. Kondo, C. Kojima, A. Ono, J. Am. Chem. Soc. 2007, 129, 244.

    Google Scholar 

  25. S. Johannsen, S. Paulus, N. Düpre, J. Müller, R. K. O. Sigel, J. Inorg. Biochem. 2008, 102, 1141.

    Article  CAS  PubMed  Google Scholar 

  26. A. Ono, S. Cao, H. Togashi, M. Tashiro, T. Fujimoto, T. Machinami, S. Oda, Y. Miyake, I. Okamoto, Y. Tanaka, Chem. Comm. 2008, 4825.

    Google Scholar 

  27. D. A. Megger, J. Müller, Nucleosides, Nucleotides and Nucleic Acids 2010, 29, 27.

    Article  CAS  Google Scholar 

  28. R. Freeman, T. Finder, I. Willner, Angew. Chem. Int. Ed. 2009, 42, 7818.

    Article  Google Scholar 

  29. E. Ennifar, P. Walter, P. Dumas, Nucleic Acids Res. 2003, 31, 2671.

    Article  CAS  PubMed  Google Scholar 

  30. J. Joseph, G. B. Schuster, Org. Lett. 2007, 9, 1843.

    Article  CAS  PubMed  Google Scholar 

  31. A. A. Voityuk, J. Phys. Chem. B 2006, 110, 21010.

    Article  CAS  PubMed  Google Scholar 

  32. S.-P. Liu, S.-H. Weisbrod, Z. Tang, A. Marx, E. Scheer, A. Erbe, Angew. Chem. Int. Ed. 2010, 49, 3313.

    Article  CAS  Google Scholar 

  33. (a) A. Houlton, A. R. Pike, M. A. Galindo, B. R. Horrocks, Chem. Comm. 2009, 1797; (b) G. A. Burley, J. Gierlich, M. R. Mofid, H. Nir, S. Tal, Y. Eichen, T. Carell, J. Am. Chem. Soc. 2006, 128, 1398.

    Google Scholar 

  34. J. Müller, Metallomics 2010, 2, 318.

    Article  PubMed  Google Scholar 

  35. K. Tanaka, M. Shionoya, J. Org. Chem. 1999, 64, 5002.

    Article  CAS  Google Scholar 

  36. K. Tanaka, Y. Yamada, M. Shionoya, J. Am. Chem. Soc. 2002, 124, 8802.

    Article  CAS  PubMed  Google Scholar 

  37. (a) E. Meggers, P. L. Holland, W. B. Tolman, F. E. Romesberg, P. G. Schultz, J. Am. Chem. Soc. 2000, 122, 10714; (b) N. Zimmermann, E. Meggers, P. G. Schultz, Bioorg. Chem. 2004, 32, 13.

    Google Scholar 

  38. S. Atwell, E. Meggers, G. Spraggon, P. G. Schultz, J. Am. Chem. Soc. 2001, 123, 364.

    Article  Google Scholar 

  39. K. Tanaka, M. Shionoya, Coord. Chem. Rev. 2007, 251, 2732.

    Article  CAS  Google Scholar 

  40. J. Müller, Eur. J. Inorg. Chem. 2008, 3749.

    Google Scholar 

  41. I. Okamoto, K. Iwamoto, Y. Watanabe, Y. Miyake, A. Ono, Angew. Chem. Int. Ed. 2009, 48, 1648.

    Article  CAS  Google Scholar 

  42. N. Zimmermann, E. Meggers, P. G. Schultz, J. Am. Chem. Soc. 2002, 124, 13684.

    Article  CAS  PubMed  Google Scholar 

  43. L. Zhang, E. Meggers, J. Am. Chem. Soc. 2005, 127, 74.

    Article  CAS  PubMed  Google Scholar 

  44. H. Weizman, Y. Tor, J. Am. Chem. Soc. 2001, 123, 3375.

    Article  CAS  PubMed  Google Scholar 

  45. (a) C. Switzer, S. Sinha, P. H. Kim, B. D. Heuberger, Angew. Chem. Int. Ed. 2005, 44, 1529; (b) C. Switzer, D. Shin, Chem. Commun. 2005, 1342.

    Google Scholar 

  46. M. J. Gait (Ed.), Oligonucleotide Synthesis: A Practical Approach, IRL Press, New York, 1990.

    Google Scholar 

  47. C. A. Schalley (Ed.), Analytical Methods in Supramolecular Chemistry, Wiley-VCH, Weinheim, 2007.

    Google Scholar 

  48. K. Tanaka, A. Tengeiji, T. Kato, N. Toyama, M. Shiro, M. Shionoya, J. Am. Chem. Soc. 2002, 124, 12494.

    Article  CAS  PubMed  Google Scholar 

  49. (a) M. K. Schlegel, L.-O. Essen, E. Meggers, J. Am. Chem. Soc. 2008, 130, 8158; (b) M. K. Schlegel, L. Zhang, N. Pagano, E. Meggers, Org. Biomol. Chem. 2009, 7, 476.

    Google Scholar 

  50. Y. Takezawa, K. Tanaka, M. Yori, S. Tashiro, M. Shiro, M. Shionoya, J. Org. Chem. 2008, 73, 6092.

    Article  CAS  PubMed  Google Scholar 

  51. Y. Takezawa, W. Maeda, K. Tanaka, M. Shionoya, Angew. Chem. Int. Ed. 2009, 48, 1081.

    Article  CAS  Google Scholar 

  52. T. Ihara, T. Ishii, N. Araki, A. W. Wilson, A. Jyo, J. Am. Chem. Soc. 2009, 131, 3826.

    Article  CAS  PubMed  Google Scholar 

  53. (a) G. H. Clever, K. Polborn, T. Carell, Angew. Chem. Int. Ed. 2005, 44, 7204; (b) G. H. Clever, Y. Söltl, H. Burks, W. Spahl, T. Carell, Chem. Eur. J. 2006, 12, 8708; (c) G. H. Clever, T. Carell, Angew. Chem. Int. Ed. 2007, 46, 250.

    Google Scholar 

  54. D. Böhme, N. Düpre, D. A. Megger, J. Müller, Inorg. Chem. 2007, 46, 10144.

    Article  Google Scholar 

  55. (a) J. Müller, D. Böhme, N. Düpre, M. Mehring, F.-A. Polonius, J. Inorg. Biochem. 2007, 101, 470; (b) J. Müller, D. Böhme, P. Lax, M. Morell Cerda, M. Roitzsch, Chem. Eur. J. 2005, 11, 6246.

    Google Scholar 

  56. J. K. Klosterman, Y. Yamauchi, M. Fujita, Chem. Soc. Rev. 2009, 38, 1714.

    Article  CAS  PubMed  Google Scholar 

  57. S. Johannsen, S. Paulus, N. Düpre, J. Müller, R. K. O. Sigel, J. Inorg. Biochem. 2008, 102, 1141.

    Article  CAS  PubMed  Google Scholar 

  58. K. Tanaka, A. Tengeiji, T. Kato, N. Toyama, M. Shionoya, Science 2003, 299, 1212.

    Article  CAS  PubMed  Google Scholar 

  59. S. S. Mallajosyula, S. K. Pati, Angew. Chem. Int. Ed. 2009, 48, 4977.

    Article  CAS  Google Scholar 

  60. G. H. Clever, S. J. Reitmeier, T. Carell, O. Schiemann, Angew. Chem. Int. Ed. 2010, 49, 4927.

    Article  CAS  Google Scholar 

  61. (a) Y. Nakanishi, Y. Kitagawa, Y. Shigeta, T. Saito, T. Matsui, H. Miyachi, T. Kawakami, M. Okumura, K. Yamaguchi, Polyhedron 2009, 28, 1945; (b) T. Matsui, H. Miyachi, Y. Nakanishi, Y. Shigeta, T. Sato, Y. Kitagawa, M. Okumura, K. Hirao, J. Phys. Chem. B. 2009, 113, 12790.

    Google Scholar 

  62. F.-A. Polonius, J. Müller, Angew. Chem. Int. Ed. 2007, 46, 5602.

    Article  CAS  Google Scholar 

  63. S. Johannsen, N. Megger, D. Böhme, R. K. O. Sigel, J. Müller, Nat. Chem. 2010, 2, 229.

    Article  CAS  PubMed  Google Scholar 

  64. J. Müller, Nature 2006, 444, 698.

    Article  PubMed  Google Scholar 

  65. K. Tanaka, G. H. Clever, Y. Takezawa, Y. Yamada, C. Kaul, M. Shionoya, T. Carell, Nat. Nanotechnol. 2006, 1, 190.

    Article  CAS  PubMed  Google Scholar 

  66. K. Yanagida, N. Hamochi, K. Sasano, I. Okamoto, A. Ono, Nucleic Acids Symp. Ser. 2007, 51, 179.

    Article  Google Scholar 

  67. (a) K. Kawai, Y. Osakada, M. Fujitsuka, T. Majima, J. Phys. Chem. B 2008, 112, 2144; (b) R. Yamagami, K. Kobayashi, A. Saeki, S. Seki, S. Tagawa, J. Am. Chem. Soc. 2006, 128, 2212.

    Google Scholar 

  68. S. Liu, G. H. Clever, Y. Takezawa, M. Kaneko, K. Tanaka, X. Guo, M. Shionoya, Angew. Chem. Int. Ed. 2011, 50, 8886.

    Google Scholar 

  69. C. Kaul, M. Müller, M. Wagner, S. Schneider, T. Carell, Nat. Chem. 2011, in press, DOI: 10.1038/nchem.1117.

    Google Scholar 

Download references

Acknowledgments

G.H.C. thanks the “Fonds der Chemischen Industrie” and the “Deutsche Forschungsgemeinschaft” (IRTG 1422 – Metal Sites in Biomolecules) for generous support. This work was supported by grants-in-Aids from MEXT of Japan and the Global COE Program for Chemistry Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido H. Clever .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Clever, G.H., Shionoya, M. (2012). Alternative DNA Base Pairing through Metal Coordination. In: Sigel, A., Sigel, H., Sigel, R. (eds) Interplay between Metal Ions and Nucleic Acids. Metal Ions in Life Sciences, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2172-2_10

Download citation

Publish with us

Policies and ethics