Skip to main content

Heavy Metal Pollution: Source, Impact, and Remedies

  • Chapter
  • First Online:
Biomanagement of Metal-Contaminated Soils

Part of the book series: Environmental Pollution ((EPOL,volume 20))

Abstract

Although some heavy metals are essential trace elements, most of them can be toxic to all forms of life at high concentrations due to formation of complex compounds within the cell. Unlike organic pollutants, heavy metals once introduced into the environment cannot be biodegraded. They persist indefinitely and cause pollution of air, water, and soils. Thus, the main strategies of pollution control are to reduce the bioavailability, mobility, and toxicity of metals. Methods for remediation of heavy metal-contaminated environments include physical removal, detoxification, bioleaching, and phytoremediation. Because heavy metals are increasingly found in microbial habitats due to natural and industrial processes, microorganisms have evolved several mechanisms to tolerate their presence by adsorption, complexation, or chemical reduction of metal ions or to use them as terminal electron acceptors in anaerobic respiration. In heavy metals, pollution abatement, microbial sensors, and transformations are getting increased focus because of high efficiency and cost effectiveness. The sources and impacts of heavy metal pollution as well as various remediation techniques are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmann AH, Krumholz LR, Hemond HF, Lovley DR, Morel FMM (1997) Microbial mobilization of arsenic from sediments of the Aberjona watershed. Environ Sci Technol 3:2923–2930

    Article  Google Scholar 

  • Alkorta I, Hernández-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Biotechnol 3:71–90

    Article  CAS  Google Scholar 

  • Athar M, Vohora SB (1995) Heavy metals and environment. New Age International (P) Ltd., Publishers Reprint 2001, Google Book cited 28 Mar 2010

    Google Scholar 

  • Baker AJM (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Balogh SJ, Engstrom DR, Almendinger JE, McDermott C, Hu J, Nollet YH, Meyer ML, Johnson DK (2009) A sediment record of trace metal loadings in the upper Mississippi River. J Paleolimnol 41:623–639

    Article  Google Scholar 

  • Berg M, Tran CH, Nguyen TC, Pham HV, Schertenleib R, Giger W (2001) Arsenic contamination of groundwater and drinking water in Vietnam: a human health drinking threat. Environ Sci Technol 35:2621–2626

    Article  CAS  Google Scholar 

  • Bernd N, Jean-Marc O, Mathias S, Rainer S, Werner H, Victor K (2001) Elevated lead and zinc contents in remote alpine soils of the Swiss national park. J Environ Qual 30:919–926

    Article  Google Scholar 

  • Blaser P, Zimmermann S, Luster J, Shotyk W (2000) Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils. Sci Total Environ 249:257–280

    Article  CAS  Google Scholar 

  • Bontidean I, Lloyd JR, Hobman JL, Wilson JR, Csöregi E, Mattiasson B, Brown NL (2000) Bacterial metal-resistance proteins and their use in biosensors for the detection of bioavailable heavy metals. J Inorg Biochem 79:225–229

    Article  CAS  Google Scholar 

  • Brookes PC (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fertil Soils 19:269–279

    Article  CAS  Google Scholar 

  • Brooks RR (1998) Phytoarcheology and hyperaccumulators. In: Brooks RR (ed.) Plants that hyperaccumulate heavy metals. CAB International, Oxon, pp 153–180

    Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Safe 45:198–207

    Article  CAS  Google Scholar 

  • Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbal MH, Daubresse CM (2004) Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol 45:1681–1693

    Article  CAS  Google Scholar 

  • Chen S, EunKi Kim E, Shuler ML, Wilson DB (2008) Hg2+ removal by genetically engineered Escherichia coli in a hollow fiber bioreactor. Biotechnol Prog 14:667–671

    Article  Google Scholar 

  • Cummings DE, JrF C, Fendorf S, Rosenzweig RF (1999) Arsenic mobilization by the dissimilatory Fe(III) reducing bacterium Shewanella alga Br Y. Environ Sci Technol 33:723–729

    Article  CAS  Google Scholar 

  • Dazy M, Masfaraud JF, Férard JF (2009) Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw. Chemosphere 75:297–302

    Article  CAS  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    Article  CAS  Google Scholar 

  • Dong J, Fei-bo W, Guo-ping Z (2005) Effect of cadmium on growth and photosynthesis of tomato seedlings. J Zhejiang Univ Sci B 6:974–980

    Article  Google Scholar 

  • Duffus JH (2002) “Heavy Metals” – a meaningless term. Pure Appl Chem 74:793–807

    Article  CAS  Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118

    Google Scholar 

  • European Commission (2002) Wonders of life. Stories from life sciences research (from the Fourth and Fifth Framework Programmes). Office of Official Publications of the European Communities, Luxembourg, p 27

    Google Scholar 

  • European Commission (2002a) Heavy metals in wastes, European Commission on Environment, Denmark. http://ec.europa.eu/environment/waste/studies/pdf/heavy_metalsreport.pdf

  • Evangelou VP (1998) Environmental soil and water chemistry: principles and applications. Wiley, New York

    Google Scholar 

  • Evans GM, Furlong JC (2003) Environmental biotechnology theory and application. Wiley, West Sussex, pp 143–170

    Google Scholar 

  • Ferner DJ (2001) Toxicity, heavy metals. eMed J 2:1

    Google Scholar 

  • Fuge R, Glover SP, Pearce NJG, Perkins WT (1991) Some observations on heavy metal concentrations in soils of the Mendip region of north Somerset. Environ Geochem Health 13:193–196

    Article  CAS  Google Scholar 

  • Garbisu C, Hernández-Allica J, Barrutia O, Alkorta I, Becerril JM (2002) Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev Environ Health 17:75–90

    Article  Google Scholar 

  • Gimmler H, Carandang J, Boots A, Reisberg E, Woitke M (2002) Heavy metal content and distribution within a woody plant during and after seven years continuous growth on municipal solid waste (MSW) bottom slag rich in heavy metals. J Appl Bot Food Qual 76:203–217

    CAS  Google Scholar 

  • Godt J, Franziska S, Christian GS, Vera E, Paul B, Andrea R, David AG (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22

    Article  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Over-expressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  CAS  Google Scholar 

  • Gupta A (2006) Diversified arsenic resistant microbial population from industrial and ground water sources and their molecular characterization. PhD thesis, G. B. Pant University of Agriculture & Technology, Pantnagar

    Google Scholar 

  • Gupta A, Rai V, Bagdwal N, Goel R (2005) In situ characterization of mercury resistant growth promoting fluorescent pseudomonads. Microbiol Res 160:385–388

    Article  CAS  Google Scholar 

  • Gupta A, Rai DK, Pandey RS, Sharma B (2008) Analysis of some heavy metals in the riverine water, sediments and fish from river Ganges at Allahabad. Environ Monit Assess 157:449–458

    Article  Google Scholar 

  • Habashi F (1992) Environmental issues in the metallurgical industry: progress and problems. In: Singhal RK et al (eds.) Environmental issues and waste management in energy and mineral production. Balkema, Rotherdam, pp 1143–1153

    Google Scholar 

  • Järup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Article  Google Scholar 

  • John RP, Ahmad P, Gadgil K, Sharma S (2009) Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int J Plant Prod 3:65–76

    CAS  Google Scholar 

  • Kachenko AG, Bhatia NP, Siegele R, Walsh KB, Singh B (2009) Nickel, Zn and Cd localisation in seeds of metal hyperaccumulators using μ-PIXE spectroscopy. Nucl Instrum Methods Phys Res B Beam Interact Mater Atoms 267:2176–2180

    Article  CAS  Google Scholar 

  • Kachout SS, Mansoura AB, Leclerc JC, Mechergui R, Rejeb MN, Ouerghi Z (2009) Effects of heavy metals on antioxidant activities of Atriplex hortensis and A. rosea. J Food Agr Environ 7(938):945

    Google Scholar 

  • Kantor D (2006) Guillain-Barre syndrome, the medical encyclopedia, National Library of Medicine and National Institute of Health. http://www.nlm.nih.gov/medlineplus/

  • Kefala MI, Zouboulis AI, Matis KA (1999) Biosorption of cadmium ions by Actinomycetes and separation by flotation. Environ Pollut 104:283–293

    Article  CAS  Google Scholar 

  • Kim B, McBride MB (2009) Phytotoxic Effects of Cu and Zn on soybeans grown in field-aged soils: their additive and interactive actions. J Environ Qual 38:2253–2259

    Article  CAS  Google Scholar 

  • Kolesnikov SI, Kazeev KS, Varkov VF (2000) Effects of heavy metal pollution on the ecological and biological characteristics of common Chernozem. Russ J Ecol 31:174–181

    Article  Google Scholar 

  • Laverman AM, Blum JS, Schaefer JK, Phillips EP, Lovley DR, Oremland RS (1995) Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl Environ Microbiol 61:3556–3561

    CAS  Google Scholar 

  • Lenntech Water Treatment and Air Purification (2004) Water treatment. Lenntech, Rotterdamseweg. www.excelwater.com/thp/filters/Water-Purification.htm

  • Lester JN (1987) Heavy metals in wastewater and sludge treatment processes. CRC, Boca Raton, p 208

    Google Scholar 

  • Levin SV, Guzev VS, Aseeva IV, Bab’eva IP, Marfenina OE, Umarov MM (1989) Heavy metals as a factor of anthropogenic impact on the soil microbiota. Mosk Gos Univ, pp 5–46

    Google Scholar 

  • Liang MH, Lin TH, Chiou JM, Yeh KC (2009) Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non hyperaccumulators. Environ Pollut 157:1945–1952

    Article  CAS  Google Scholar 

  • Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253

    Article  CAS  Google Scholar 

  • McCluggage D (1991) Heavy metal poisoning, NCS Magazine, Bird Hospital, CO. http//:www.cockatiels.org/articles/Diseases/metals.html

  • McDonald DG, Grandt AF (1981) Limestone- lime treatment of acid mine drainage-full scale. EPA project summary, US-EPA-600/S7-81-033

    Google Scholar 

  • McLean RJC, Beveridge TJ (1990) Metal binding capacity of bacterial surfaces and their ability to form mineralized aggregates. In: Ehrlich HL, Brierly CL (eds.) Microbial mineral recovery. Mc Graw-Hill, New York, pp 185–222

    Google Scholar 

  • McLean JE, Bledsoe BE (1992) Behavior of metals in soils. In Ground water issue EPA/540/S-92/018, Ground Water and Ecosystems Restoration Division, US-EPA, Ada

    Google Scholar 

  • Microsoft Encarta (2008) Encarta encyclopedia. Encyclopedia DVD, Microsoft Corporation, Redmond

    Google Scholar 

  • Moral R, Gilkes RJ, Jordán MM (2005) Distribution of heavy metals in calcareous and non-calcareous soils in Spain. Water Air Soil Pollut 162:127–142

    Article  CAS  Google Scholar 

  • National Institute of Neurological Disorders and Stroke, NINDS (2007) Guillain-Barre syndrome, Guillain-Barre syndrome fact sheet. http://www.ninds.nih.gov/disorders/gbs/details_gbs.htm

  • Németh T, Kádár I (2005) Leaching of microelement contaminants: a long term field study. Z Naturforsch 60:260–264

    Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. Ind J Microbiol 14:186–199

    Article  CAS  Google Scholar 

  • Nolan K (2003) Copper toxicity syndrome. J Orthomol Psychiatry 12:270–282

    Google Scholar 

  • Peplow D (1999) Environmental impacts of mining in eastern Washington. Center for Water and Watershed Studies Fact Sheet, University of Washington, Seattle

    Google Scholar 

  • Pongratz R, Heumann KG (1999) Production of methylated mercury, lead and cadmium by marine bacteria as a significant natural source for atmospheric heavy metals in polar regions. Chemosphere 39:89–102

    Article  CAS  Google Scholar 

  • Proctor J, Baker AJM (1994) The importance of nickel for plant growth in ultramafic (serpentine) soils. In: Ross SM (ed.) Toxic metals in soil–plant systems. Wiley, Chichester, pp 417–432

    Google Scholar 

  • Rai UN, Pal A (2002) Health hazards of heavy metals. International Society of Environmental Botanist 8(1)

    Google Scholar 

  • Ramanathan S, Ensor M, Daunert S (1997) Bacterial biosensors for monitoring toxic metals. Trends Biotechnol 15:500–506

    Article  CAS  Google Scholar 

  • Rani A (2009) Proteomic studies and functional characterization of cadmium resistant bacteria. PhD thesis, GB Pant University of Agriculture & Technology, Pantnagar

    Google Scholar 

  • Rani A, Goel R (2009a) In-situ bioremediation effect of Pseudomonas putida KNP9 strain on cadmium and lead toxicity. In: Sayyed RZ, Patil AS (eds.) Biotechnology emerging trends. Scientific Publisher, Jodhpur, pp 379–384

    Google Scholar 

  • Rani A, Goel R (2009b) Strategies for crop improvement in contaminated soils using metal tolerant bioinoculants. In: Khan MS, Zaidi A, Musarrat J (eds.) Microbial strategies for crop improvement. Springer, Berlin, pp 85–104

    Chapter  Google Scholar 

  • Rani A, Shouche YS, Goel R (2008) Declination of copper toxicity in pigeon pea and soil system by growth promoting proteus vulgaris KNP3 strain. Curr Microbiol 57:78–82

    Article  CAS  Google Scholar 

  • Rani A, Shouche YS, Goel R (2009) Comparative assessment of in situ bioremediation potential of cadmium resistant acidophilic Pseudomonas putida 62BN and alkalophilic Pseudomonas monteilli 97AN strains on soybean. Int Biodet Biodegrad 63:62–66

    Article  CAS  Google Scholar 

  • Ross S (1994) Toxic metals in soil-plant systems. Wiley, Chichester

    Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  CAS  Google Scholar 

  • Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolitoautotrophic arsenite-oxidizing bacterium isolated from a gold-mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66:92–97

    Article  CAS  Google Scholar 

  • Sasson A (2000) Biotechnologies in developing countries: present and future. Regional and sub regional co-operation, and joint ventures, vol 3. UNESCO, Paris, Future-oriented studies, pp 103

    Google Scholar 

  • Sasson A (2004) Industrial and environmental biotechnology achievements, prospects, and ­perceptions. UNU-IAS Report. Center Pacifico-Yokohama, Japan

    Google Scholar 

  • Satlewal A, Goel R, Garg GK (2010) Industrially useful microbial bioresources. In: Maheshwari DK, Dubey RC, Saravanamuthu R (eds.) Industrial exploitation of microorganisms. IK International Publication Ltd, New Delhi, pp 390–405

    Google Scholar 

  • Sen R, Chakrabarti S (2009) Biotechnology applications to environmental remediation in resource exploitation. Curr Sci 97:25

    Google Scholar 

  • Shamsi IH, Wei K, Jilani G, Zhang GP (2007) Interactions of cadmium and aluminum toxicity in their effect on growth and physiological parameters in soybean. J Zhejiang Univ Sci B 8:181–188

    Article  CAS  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789

    Article  CAS  Google Scholar 

  • Sohrin Y, Matsui M, Kawashima M, Hojo M, Hasegawa H (1997) Arsenic biogeochemistry affected by eutrophication in Lake Biwa, Japan. Environ Sci Technol 31:2712–2720

    Article  CAS  Google Scholar 

  • Sterritt RM, Lester JM (1996) Heavy metals immobilization by bacterial extracellular polymers. In: Eccles H, Hunt J (eds.) Immobilization of ions by bio-sorption. Chemistry Society, London, pp 121–134

    Google Scholar 

  • Szili-Kovács T, Anton A, Gulyás F (1999) Effect of Cd, Ni and Cu on some microbial properties of a calcareous chernozem soil. In: Kubát J, Prague (ed.) Proceedings of the 2nd Symposium on the pathways and consequences of the dissemination of pollutants in the biosphere, Prague, pp 88–102

    Google Scholar 

  • Tebo BM, Ghiorse WC, van Waasbergen LG, Siering PL, Caspi R (1997) Bacterially-mediated mineral formation: insights into manganese (II) oxidation from molecular genetics and biochemical studies. Rev Miner Geochem 35:225–266

    CAS  Google Scholar 

  • Tripathi M, Munot HP, Souche Y, Meyer JM, Goel R (2005) Isolation and functional characterization of siderophore producing lead and cadmium resistant Pseudomonas putida KNP9. Curr Microbiol 50:233–237

    Article  CAS  Google Scholar 

  • Turpeinen R (2002) Interactions between metals, microbes and plants–Bioremediation of arsenic and lead contaminated soils. Academic dissertation in environmental ecology, University of Helsinki, Helsinki

    Google Scholar 

  • Udedi SS (2003) From guinea worm scourge to metal toxicity in Ebonyi State. Chem Niger as New Millennium Unfolds 2:13–14

    Google Scholar 

  • United Nations Environmental Protection/Global Program of Action (UNEP/GPA) (2004) Why the marine environment needs protection from heavy Metals, heavy metals. UNEP/GPA Coordination Office. http://www.oceansatlas.org/unatlas/uses/uneptextsph/wastesph/2602gpa

  • United States Department of Labor (USDOL) (2004) Occupational Safety and Health Administra­tion (OSHA); Safety and health topics: heavy metals. USDOL Publication, Washington, DC. http://www.osha.gov/SLTC/metalsheavy/index.html

  • US EPA (2007) The use of soil amendments for remediation, revitalization and reuse. http://www.epa.org. Cited 29 Mar 2010

  • Wang W, Zhenghe X, Finck J (1996) Fundamental study of an ambient temperature ferrite process in the treatment of acid mine drainage. Environ Sci Technol 30:2604–2608

    Article  CAS  Google Scholar 

  • White C, Sayer JA, Gadd GM (1997) Microbial solubilization and immobilization of toxic metals: key biochemical processes for treatment of contamination. FEMS Microbiol Rev 20:503–516

    Article  CAS  Google Scholar 

  • Zouboulis AI, Matis KA (1997) Removal of metal ions from dilute solutions by sorptive flotation. Crit Rev Environ Sci Tech 27:195–235

    Article  CAS  Google Scholar 

  • Zouboulis AI, Matis KA (1998) The biosorption process: an innovation in reclamation of toxic metals. In: Gallios GP, Matis KA (eds.) Mineral processing and the environment. Kluwer, Dordrecht, pp 361–385

    Google Scholar 

  • Zouboulis AI, Rousou EG, Matis KA, Hancock IC (1999) Removal of toxic metals from aqueous mixtures: part 1. Biosorption. J Chem Technol Biotechnol 74:429–436

    Article  CAS  Google Scholar 

  • Zouboulis AI, Matis KA, Lazaridis NK (2001) Removal of metal ions from simulated wastewater by Saccharomyces yeast biomass; combining biosorption and flotation processes. Sep Sci Technol 36:349–365

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reeta Goel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mohammed, A.S., Kapri, A., Goel, R. (2011). Heavy Metal Pollution: Source, Impact, and Remedies. In: Khan, M., Zaidi, A., Goel, R., Musarrat, J. (eds) Biomanagement of Metal-Contaminated Soils. Environmental Pollution, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1914-9_1

Download citation

Publish with us

Policies and ethics