Skip to main content

Terms for Delamination in Wood Science and Technology

  • Chapter
  • First Online:
Book cover Delamination in Wood, Wood Products and Wood-Based Composites

Abstract

In Material Science, delamination is defined as a sub critical damage to the interfaces between the plies in a laminate composite that causes a reduction in the load carrying capacity of composite (Morris 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Society for Testing and Materials (2007) Standard terminology relating to wood and wood-based products. ASTM D 9 – 05. Philadelphia, PA

    Google Scholar 

  • American Society for Testing and Materials (2007) Standard test methods for evaluating properties of wood - base fibre particle panel material. ASTM D 1037-06a. Philadelphia, PA

    Google Scholar 

  • American Society for Testing and Materials (2007) Standard terminology relating to veneer and plywood. ASTM D 1038- 83 (2005) Philadelphia, PA

    Google Scholar 

  • American Society for Testing and Materials (2007) Standard terminology relating to wood-based fibre and particle panel material ASTM D 1554 - 01 (2005) Philadelphia, PA

    Google Scholar 

  • American Society for Testing and Materials (2007) test methods for structural panels in shear through the thickness. ASTM D 2719 – 89 (2007) Philadelphia, PA

    Google Scholar 

  • American Society for Testing and Materials (2007) Standard test method for shear modulus of wood-based structural panels. ASTM D 3044 – 94 (2006) Philadelphia, PA

    Google Scholar 

  • American Society for Testing and Materials (2007) Standard test method for toughness wood-based structural panels. ASTM D 3499 – 94 (2005) Philadelphia, PA

    Google Scholar 

  • American Society for Testing and Materials (2007) Standard practice for establishing allowable properties of structural glued-laminated timber (glulam). ASTM D 3737- 07 Philadelphia, PA

    Google Scholar 

  • American Society for Testing and Materials (2007) Specification for evaluation of structural composite lumber. ASTM D 5456-06 Philadelphia, PA

    Google Scholar 

  • American Society for Testing and Materials (2007) Standard test method for surface bond strength of wood-based fibre and particle panel material ASTM D 5651 – 95a (2002) Philadelphia, PA

    Google Scholar 

  • American Society for Testing and Materials (2007) Standard guide for evaluating mechanical and physical properties of wood-plastic composites products ASTM D 7031 -04 (2004) Philadelphia, PA

    Google Scholar 

  • ASTM D1101 - 97a (2006) Standard Test Methods for Integrity of Adhesive Joints in Structural Laminated Wood Products for Exterior Use

    Google Scholar 

  • Bienfait JL (1926) Relation of the manner of failure to the structure of wood under compression parallel to the grain. J Agri Res 33:183–194

    Google Scholar 

  • Boatright SWJ, Garrett GG (1983) The effect of microstructure and stress state on the fracture behaviour of wood. J Mat Sci 18:2181–2199

    Article  CAS  Google Scholar 

  • Bolotin VV (1996) Delaminations in composite structures: its origin, buckling, growth and stability. Composites: Part B, 27B:129–145

    Article  CAS  Google Scholar 

  • Brush WD (1913) A microscopic study of the mechanical failure of wood. U.S. Depart Agri Rev Forest Serv 2:33–38

    Google Scholar 

  • Chafe SC (1977) Radial dislocations in the fiber wall of Eucalyptus regnans trees of high growth stress. Wood Sci Techn 11:69–77

    Google Scholar 

  • Clair B (2001) Etudes des proprietes mecaniques et du retrait au sechage du bois a l`echelle de la paroi cellulaire . PhD thesis Universite de Montpellier II. France

    Google Scholar 

  • Côté WA, Hanna RB (1983) Ultrastructural characteristics of wood fracture surfaces. Wood Fiber Sci 15:135–163

    Google Scholar 

  • Dadswell HE, Langlands I (1934) Brittle heart in Australian timbers: a preliminary study. J Couns Sci Ind Res Australia 7:190–196

    CAS  Google Scholar 

  • Dinwoodie JM (1966) Introduction of cell wall dislocations (slip planes) during the preparation of microscopic sections of wood. Nature 212:525–527

    Article  Google Scholar 

  • Dinwoodie JM (1968) Failure in timber. Part I. Microscopic changes in cell wall structure associated with compression failure. J Inst Wood Sci 4:37–53

    Google Scholar 

  • Dill-Langer G, Lutze S, Aicher S (2002) Microfracture in wood monitored by confocal laser scanning microscopy. Wood Sci Technol 36:487–499

    Article  CAS  Google Scholar 

  • Donaldson LA (1995) Cell wall fracture properties in relation to lignin distribution and cell dimensions among three genetic groups of radiate pine. Wood Sci Techn 29:51–63

    CAS  Google Scholar 

  • Fruhmann K, Burgert I, Stanzl-Tschegg SE, Tschegg EK Mode I (2003) Fracture behaviour on the growth ring scale and cellular level of spruce and beech loaded in the TR crack propagation system. Holzforschung, 57:653–660

    Article  Google Scholar 

  • Green HV (1962) Compression caused transverse discontinuities in tracheids. Pulp Paper Mag Canada 63(3):T 155 – T 168

    Google Scholar 

  • Jacard P (1910) Etude anatomique des bois comprimés. Mitt Schw. Centralanstalt. Forst. Versuchwessen 10:53–101

    Google Scholar 

  • Keith CT (1971) The anatomy of compression failure in relation to creep – inducing stresses. Wood Sci 4:71–82

    Google Scholar 

  • Keith CT (1974) Longitudinal compressive creep and failure development in white spruce compression wood. Wood Sci 7:1–12

    Google Scholar 

  • Keith CT, Côté Jr. WA (1968) Microscopic characterization of lip lines and compression failures in wood cell walls. Forest Prod J 18:67–74

    Google Scholar 

  • Kisser J, Frenzel H (1950) Mikroskopische Veränderungen der Holzstruktur bei mechanischer Überbeansprucging von Holz in der Faserrichtung. Schr Österr. Ges. Holzforschung 2:3–27

    Google Scholar 

  • Kisser J, Frenzel H (1952) Makroscopische und microsckopische Strukturänderungen bei der Biegebeanspruchung von Holz. Holz Roh- und Werkstoff 10:415–421

    Article  CAS  Google Scholar 

  • Kucera LJ, Bariska M (1982) On the fracture morphology in wood. Part I: A SEM - study of deformations in wood of spruce and aspen upon ultimate axial compression load. Wood SciTechnol 16:241–259

    Article  Google Scholar 

  • Meyer RV, Leney L (1968) Shake in coniferous woods – an anatomical study. Forest Prod J 18(2):51–56

    Google Scholar 

  • Morris C (ed) (1992) Dictionary of science and technology. Academic, Sandiego, p 604

    Google Scholar 

  • Murmanis L, Youngquist JA, Myers GC (1986) Electron microscopy study of hardboards. Wood Fiber Sci 18(3):369–375

    CAS  Google Scholar 

  • Reiter A, Sinn G (2002) Facture behaviour of modified spruce wood: a study using linear and non linear fracture mechanics. Holzforschung 56:191–198

    Article  Google Scholar 

  • Reiter A, Sinn G, Stanzl-Tschegg SE (2002) Fracture characteristics of different wood species under mode I loading perpendicular to the grain. Mater Sci Eng A 332:29–36

    Article  Google Scholar 

  • Robinson W (1920) The microscopical features of mechanical strains in timber and the bearing of these on the structure of the cell wall in plants. Phil Trans R Soc 210 B:49–82

    Google Scholar 

  • Scurfield G, Silva SR, Wold MB (1972) Failure of wood under load applied parallel to grain. A study using scanning electron microscopy. Micron 3:160–184

    Google Scholar 

  • Sell J, Zimmermann T (1998) The fine structure of the cell wall of hardwoods on transverse fracture surfaces. HolzRoh Werkst 56:365–366

    Article  Google Scholar 

  • Thuvander F, Berglund LA (2000) In situ observations of fracture mechanisms for radial cracks in wood. J Mat Sci 35:6277–6283

    Article  CAS  Google Scholar 

  • Tschegg EK, Fruhmann K, Stanzl-Tschegg SE (2001) Damage and fracture mechanisms during mode I and mode III loading of wood. Holzforschung 55:525–533

    Article  CAS  Google Scholar 

  • Vasic S, Stanzl-Tschegg SE (2007) Experimental and numerical investigation of wood fracture mechanisms at different humidity levels. Holzforschung 61:367–374

    Article  CAS  Google Scholar 

  • Wardrop AB, Dadswell HE (1947) The occurrence, structure and properties of certain cell wall deformations. J Coun Sci Ind Res Aust 221(5):14–32

    Google Scholar 

  • Wilkins AP (1986) The nomenclature of cell wall deformations. Wood Sci Technol 20:97–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Voichita Bucur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bucur, V. (2010). Terms for Delamination in Wood Science and Technology. In: Bucur, V. (eds) Delamination in Wood, Wood Products and Wood-Based Composites. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9550-3_2

Download citation

Publish with us

Policies and ethics