Skip to main content

Phanerozoic Marine Biodiversity: A Fresh Look at Data, Methods, Patterns and Processes

  • Chapter

Part of the book series: International Year of Planet Earth ((IYPE))

Abstract

Patterns of Phanerozoic global biodiversity continue to be a major focus of palaeobiological research. Recent advances have been fuelled by the establishment of the Paleobiology Database. This new type of data compilation, based on the actual occurrences of taxa in fossil collections, has entailed the development and application of a whole set of new analytical methods. These allow to account for large-scale biases that affect estimates of palaeodiversity, in particular uneven sampling and differential preservation of rocks and fossils. The new curve of global diversity of marine genera (Alroy et al. 2008) deviates in important aspects from traditional ones. Rather than an exponential post-Palaeozoic increase in diversity, it shows an only modest rise from the mid-Palaeozoic to the Neogene. This rise is paralleled by an increase in within-assemblage (alpha) diversity. Contrasting previous conceptions, between-assemblage (beta) diversity, here presented for the first time by a Phanerozoic beta curve, does not show a long-term trend. We approximate the new global Phanerozoic marine diversity trajectory by two consecutive logistic curves, one for the Palaeozoic and one for the Mesozoic to Cenozoic. This implies two thresholds for global diversity in the Phanerozoic, although these are not far apart. We discuss the concept of a biosphere-wide carrying capacity and argue that competition for limited resources and incumbency effects are constraining the diversity of marine life on macroevolutionary scales.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aberhan M, Kiessling W, Fürsich FT (2006) Testing the role of biological interactions in the evolution of mid-Mesozoic marine benthic ecosystems. Paleobiology 32:259–277

    Article  Google Scholar 

  • Allison PA, Briggs DEG (1993) Paleolatitudinal sampling bias, Phanerozoic species diversity, and the end-Permian extinction. Geology 21:65–68

    Article  Google Scholar 

  • Alroy J (1998) Equilibrial diversity dynamics in North American mammals. In: McKinney ML, Drake JA (eds) Biodiversity dynamics. Columbia University Press, New York, pp 232–287

    Google Scholar 

  • Alroy J (2000) New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707–733

    Article  Google Scholar 

  • Alroy J (2008) Dynamics of origination and extinction in the marine fossil record. Proc Natl Acad Sci 105:11536–11542

    Article  Google Scholar 

  • Alroy J, Aberhan M, Bottjer DJ, Foote M, Fürsich FT, Hendy AJW, Holland SM, Ivany LC, Kiessling W, Kosnik MA, Marshall CR, McGowan AJ, Miller AI, Olszewski TD, Patzkowsky ME, Wagner PJ, Bonuso N, Borkow PS, Brenneis B, Clapham ME, Ferguson CA, Hanson VL, Jamet CM, Krug AZ, Layou KM, Leckey EH, Nürnberg S, Peters SE, Sessa JA, Simpson C, Tomasovych A, Visaggi CC (2008) Phanerozoic trends in the diversity of marine invertebrates. Science 321:97–100

    Article  Google Scholar 

  • Alroy J, Marshall CR, Bambach RK, Bezusko K, Foote M, Fürsich FT, Hansen TA, Holland SM, Ivany LC, Jablonski D, Jacobs DK, Jones DC, Kosnik MA, Lidgard S, Low S, Miller AI, Novack-Gottshall PM, Olszewski TD, Patzkowsky ME, Raup DM, Roy K, Sepkoski JJ Jr, Sommers MG, Wagner PJ, Webber A (2001) Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proc Natl Acad Sci USA 98:6261–6266

    Article  Google Scholar 

  • Badgley C (2003) The multiple scales of biodiversity. Paleobiology 29:11–13

    Article  Google Scholar 

  • Bambach RK (1977) Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152–167

    Google Scholar 

  • Bambach RK (1983) Ecospace utilization and guilds in marine communities through the Phanerozoic. In: Tevesz MJS, McCall PM (eds) Biotic interactions in recent and fossil benthic communities. Plenum, New York, pp 719–746

    Google Scholar 

  • Bambach RK (1985) Classes and adaptive variety: the ecology of diversification in marine faunas through the Phanerozoic. In: Valentine JW (ed) Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, NJ, pp 191–253

    Google Scholar 

  • Bambach RK (1993) Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology 19:372–397

    Google Scholar 

  • Bambach RK (1999) Energetics in the global marine fauna: a connection between terrestrial diversification and change in the marine biosphere. Geobios 32:131–144

    Article  Google Scholar 

  • Bambach RK, Knoll AH, Sepkoski JJ Jr (2002) Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proc Natl Acad Sci 99:6854–6859

    Article  Google Scholar 

  • Bambach RK, Knoll AH, Wang SC (2004) Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522–542

    Article  Google Scholar 

  • Barnosky AD, Carrasco MA, Davis EB (2005) The impact of the species-area relationship on estimates of paleodiversity. PLoS Biol 3:e266

    Article  Google Scholar 

  • Benton MJ (ed) (1993) The fossil record 2. Chapman and Hall, London

    Google Scholar 

  • Benton MJ (1995) Diversification and extinction in the history of life. Science 268:52–58

    Article  Google Scholar 

  • Benton MJ (2009) The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science 323:728–732

    Article  Google Scholar 

  • Bush AM, Bambach RK (2004) Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. J Geol 112:625–642

    Article  Google Scholar 

  • Bush AM, Markey MJ, Marshall CR (2004) Removing bias from diversity curves: the effects of spatially organized biodiversity on sampling-standardization. Paleobiology 30:666–686

    Article  Google Scholar 

  • Collins MD, Vázquez DP, Sanders NJ (2002) Species-area curves, homogenization and the loss of global diversity. Evol Ecol Res 4:457–464

    Google Scholar 

  • Cooper RA, Maxwell PA, Crampton JS, Beu AG, Jones CM, Marshall BA (2006) Completeness of the fossil record: estimating losses due to small body size. Geology 34:241–244

    Article  Google Scholar 

  • Crampton JS, Beu AG, Cooper RA, Jones CM, Marshall B, Maxwell PA (2003) Estimating the rock volume bias in paleobiodiversity studies. Science 301:358–360

    Article  Google Scholar 

  • Crampton JS, Foote M, Beu AG, Maxwell PA, Cooper RA, Matcham L, Marshall BA, Jones CM (2006) The ark was full! Constant to declining Cenozoic shallow marine biodiversity on an isolated midlatitude continent. Paleobiology 32:509–532

    Article  Google Scholar 

  • Darwin CR, Wallace AR (1858) On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. J Proc Linnean Soc London Zool 3:45–62

    Article  Google Scholar 

  • Del Monte-Luna P, Brook BW, Zetina-Rejón MJ, Cruz-Escalona VH (2004) The carrying capacity of ecosystems. Global Ecol Biogeogr 13:485–495

    Article  Google Scholar 

  • Erwin DH (1998) The end and the beginning: recoveries from mass extinctions. Trends Ecol Evol 13:344–349

    Article  Google Scholar 

  • Erwin, DH (2001) Lessons from the past: biotic recoveries from mass extinctions. Proc Natl Acad Sci 98:5399–5403

    Article  Google Scholar 

  • Erwin, DH (2008) Macroevolution of ecosystem engineering, niche construction and diversity. Trends Ecol Evol 23:304–310

    Article  Google Scholar 

  • Foote M (2000) Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26:74–102

    Article  Google Scholar 

  • Hendy AJW (2009) The influence of lithification on Cenozoic marine biodiversity trends. Paleobiology 35:51–62

    Article  Google Scholar 

  • Jablonski D (1986) Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129–133

    Article  Google Scholar 

  • Jablonski D, Roy K, Valentine JW, Price RM, Anderson PS (2003) The impact of the Pull of the Recent on the history of marine diversity. Science 300:1133–1135

    Article  Google Scholar 

  • Jackson JBC, Johnson KG (2001) Measuring past biodiversity. Science 293:2401–2404

    Article  Google Scholar 

  • Kidwell, SM (2001) Preservation of species abundance in marine death assemblages. Science 294:1091–1094

    Article  Google Scholar 

  • Kidwell, SM (2005) Shell composition has no net impact on large-scale evolutionary patterns in mollusks. Science 307:914–917

    Article  Google Scholar 

  • Kidwell SM, Flessa KW (1996) The quality of the fossil record: populations, species, and communities. Annu Rev Earth Planetary Sci 24:433–464

    Article  Google Scholar 

  • Kiessling W (2005a) Long-term relationships between ecological stability and biodiversity in Phanerozoic reefs. Nature 433:410–413

    Article  Google Scholar 

  • Kiessling W (2005b) Habitat effects and sampling bias on Phanerozoic reef distribution. Facies 51:27–35

    Google Scholar 

  • Kiessling W, Aberhan M (2007a) Environmental determinants of marine benthic biodiversity dynamics through Triassic-Jurassic times. Paleobiology 33:414–434

    Article  Google Scholar 

  • Kiessling W, Aberhan M (2007b) Geographical distribution and extinction risk: lessons from Triassic-Jurassic marine benthic organisms. J Biogeogr 34:1473–1489

    Article  Google Scholar 

  • Kiessling W, Aberhan M, Brenneis B, Wagner PJ (2007) Extinction trajectories of benthic organisms across the Triassic-Jurassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol 244:201–222

    Article  Google Scholar 

  • Kiessling W, Aberhan M, Villier L (2008) Phanerozoic trends in skeletal mineralogy driven my mass extinctions. Nat Geosci 1:527–530

    Article  Google Scholar 

  • Kirchner JW, Weil A (2000) Delayed biological recovery from extinctions throughout the fossil record. Nature 404:177–180

    Article  Google Scholar 

  • Knoll AH (2003) Biomineralization and evolutionary history. Rev Mineral Geochem 54:329–356

    Article  Google Scholar 

  • Kowalewski M, Kiessling W, Aberhan M, Fürsich FT, Scarponi D, Wood SLB, Hoffmeister AP (2006) Ecological, taxonomic, and taphonomic components of the post-Paleozoic increase in sample-level species diversity of marine benthos. Paleobiology 32:533–561

    Article  Google Scholar 

  • Lane A, Janis CM, Sepkoski JJ Jr (2005) Estimating paleodiversities: a test of the taxic and phylogenetic methods. Paleobiology 31:21–34

    Article  Google Scholar 

  • Levinton JS (1979) A theory of diversity equilibrium and morphological evolution. Science 204:335–336

    Article  Google Scholar 

  • Lu PJ, Yogo M, Marshall CR (2006) Phanerozoic marine biodiversity dynamics in light of the incompleteness of the fossil record. Proc Natl Acad Sci USA 103:2736–2739

    Article  Google Scholar 

  • MacArthur RH,s Wilson EO (1963) An equilibrium theory of insular zoogeography. Evolution 17:373–387

    Article  Google Scholar 

  • McGowan AJ, Smith AB (2008) Are global Phanerozoic marine diversity curves truly global? A study of the relationship between regional rock records and global Phanerozoic marine diversity. Paleobiology 34:80–103

    Article  Google Scholar 

  • McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453

    Article  Google Scholar 

  • McLeod SR (1997) Is the concept of carrying capacity useful in variable environments? Oikos 79:529–542

    Article  Google Scholar 

  • Miller AI (1997) Dissecting global diversity patterns: examples from the Ordovician radiation. Annu Rev Ecol Syst 28:85–104

    Article  Google Scholar 

  • Miller AI (1998) Biotic transitions in global marine diversity. Science 281:1157–1160

    Article  Google Scholar 

  • Miller AI (2000) Conversations about Phanerozoic global diversity. Paleobiology 26(Supplement):53–73

    Article  Google Scholar 

  • Miller AI, Foote M (1996) Calibrating the Ordovician radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology 22:304–309

    Google Scholar 

  • Miller AI, Aberhan M, Buick DP, Bulinski KV, Ferguson CA, Hendy AJW, Kiessling W (2009) Phanerozoic trends in the global geographic disparity of marine biotas. Paleobiology 35:612–630

    Google Scholar 

  • Omerbashich M (2006) A Gauss–Vanicek spectral analysis of the Sepkoski compendium: no new life cycles. Comput Sci Eng 8:26–30

    Article  Google Scholar 

  • Paine RT (1966) Food web complexity and species diversity. Am Nat 100:65–75

    Article  Google Scholar 

  • Patzkowsky ME, Holland SM (2003) Lack of community saturation at the beginning of the Paleozoic plateau: the dominance of regional over local processes. Paleobiology 29:545–560

    Article  Google Scholar 

  • Pease CM (1985) Biases in the durations and diversities of fossil taxa. Paleobiology 11:272–292

    Google Scholar 

  • Peters SE (2005) Geologic constraints on the macroevolutionary history of marine animals. Proc Natl Acad Sci USA 102:12326–12331

    Article  Google Scholar 

  • Peters SE (2008) Environmental determinants of extinction selectivity in the fossil record. Nature 454:626–629

    Article  Google Scholar 

  • Peters SE, Foote M (2001) Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583–601

    Article  Google Scholar 

  • Peters SE, Foote M (2002) Determinants of extinction in the fossil record. Nature 416:420–424

    Article  Google Scholar 

  • Powell MG (2005) Climatic basis for sluggish macroevolution during the late Paleozoic ice age. Geology 33:381–384

    Article  Google Scholar 

  • Powell MG, Kowalewski M (2002) Increase in evenness and sampled alpha diversity through the Phanerozoic: comparison of early Paleozoic and Cenozoic marine fossil assemblages. Geology 30:331–334

    Article  Google Scholar 

  • Raup DM (1976) Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289–297

    Google Scholar 

  • Raup DM (1977) Species diversity in the Phanerozoic: systematists follow the fossils Paleobiology 3:328–329

    Google Scholar 

  • Raup DM (1979) Biases in the fossil record of species and genera. Bull Carnagie Museum Nat Hist 13:85–91

    Google Scholar 

  • Raup DM, Sepkoski JJ Jr (1982) Mass extinctions in the marine fossil record. Science 215:1501–1503

    Article  Google Scholar 

  • Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecol Lett 7:1–15

    Article  Google Scholar 

  • Rohde RA, Muller RA (2005) Cycles in fossil diversity. Nature 434:208–210

    Article  Google Scholar 

  • Rosenzweig ML, McCord RD (1991) Incumbent replacement: evidences for long-term evolutionary progress. Paleobiology 17:202–213

    Google Scholar 

  • Seidl I, Tisdell CA (1999) Carrying capacity reconsidered: from Malthus’ population theory to cultural carrying capacity. Ecol Econ 31:395–408

    Article  Google Scholar 

  • Sepkoski JJ Jr (1978) A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology 4:223–251

    Google Scholar 

  • Sepkoski JJ Jr (1979) A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology 5:222–251

    Google Scholar 

  • Sepkoski JJ Jr (1981) A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:36–53

    Google Scholar 

  • Sepkoski JJ Jr (1982) A compendium of fossil marine families. Milwaukee Public Museum, Contrib Biol Geol 51:1–125

    Google Scholar 

  • Sepkoski JJ Jr (1984) A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246–267

    Google Scholar 

  • Sepkoski JJ Jr (1988) Alpha, beta, or gamma: where does all the diversity go? Paleobiology 14:221–234

    Google Scholar 

  • Sepkoski JJ Jr (1993) Ten years in the library: new data confirm paleontological patterns. Paleobiology 19:43–51

    Google Scholar 

  • Sepkoski JJ Jr (1996) Patterns of Phanerozoic extinction: a perspective from global data bases. In: Walliser OH (ed) Global events and event stratigraphy in the phanerozoic. Springer, Berlin, pp 35–51

    Chapter  Google Scholar 

  • Sepkoski JJ Jr (1998) Rates of speciation in the fossil record. Philos Trans R Soc Lond B Biol Sci 353:315–326

    Article  Google Scholar 

  • Sepkoski JJ Jr (2002) A compendium of fossil marine animal genera. Bull Am Paleontol 363:1–563

    Google Scholar 

  • Sheehan PM (1977) Species diversity in the Phanerozoic: a reflection of labor by systematists? Paleobiology 3:325–329

    Google Scholar 

  • Smith AB (1994) Systematics and the fossil record: documenting evolutionary patterns. Blackwell, Oxford

    Google Scholar 

  • Smith AB (2001) Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philos Trans R Soc Lond B: Biol Sci 356:351–367

    Article  Google Scholar 

  • Smith AB (2007a) Marine diversity through the Phanerozoic: problems and prospects. J Geol Soc (Lond) 164:731–745

    Article  Google Scholar 

  • Smith AB (2007b) Intrinsic versus extrinsic biases in the fossil record: contrasting the fossil record of echinoids in the Triassic and early Jurassic using sampling data, phylogenetic analysis, and molecular clocks. Paleobiology 33:310–323

    Article  Google Scholar 

  • Smith AB, McGowan AJ (2005) Cyclicity in the fossil record mirrors rock outcrop area. Biol Lett 1:443–445

    Article  Google Scholar 

  • Smith AB, McGowan AJ (2007) The shape of the phanerozoic marine palaeodiversity curve: how much can be predicted from the sedimentary rock record of western Europe? Palaeontology 50:765–774

    Article  Google Scholar 

  • Stanley SM (2007) An analysis of the history of marine animal diversity. Paleobiology 33:1–55

    Article  Google Scholar 

  • Stanley SM, Powell MG (2003) Depressed rates of origination and extinction during the late Paleozoic ice age: a new state for the global marine ecosystem. Geology 31:877–880

    Article  Google Scholar 

  • Tapanila L (2007) FossilPlot, an Excel-based computer application for teaching stratigraphic paleontology using the Sepkoski compendium of fossil marine genera. J Geosci Educ 55:133–137

    Google Scholar 

  • Thayer CW (1983) Sediment-mediated biological disturbance and the evolution of marine benthos. In: Tevesz MJS, McCall PL (eds) Biotic interactions in recent and fossil benthic communities. Plenum Press, New York, pp 479–625

    Google Scholar 

  • Tipper JC (1979) Rarefaction and rarefiction – the use and abuse of a method in paleoecology. Paleobiology 5:423–434

    Google Scholar 

  • Valentine JW (1970) How many marine invertebrate fossil species? A new approximation. J Paleontol 44:410–415

    Google Scholar 

  • Valentine JW, Foin TC, Peart D (1978) A provincial model of Phanerozoic marine diversity. Paleobiology 4:55–66

    Google Scholar 

  • Valentine JW, Jablonski D, Kidwell S, Roy K (2006) Assessing the fidelity of the fossil record by using marine bivalves. PNAS 103:6599–6604

    Article  Google Scholar 

  • Valentine JW, Jablonski D, Krug AZ, Roy K (2008) Incumbency, diversity, and latitudinal gradients. Paleobiology 34:169–178

    Article  Google Scholar 

  • Veevers JJ (1990) Tectonic-climatic supercycle in the billion-year plate-tectonic eon: Permian Pangean icehouse alternates with Cretaceous dispersed-continents greenhouse. Sedimentary Geol 68:1–16

    Article  Google Scholar 

  • Vermeij GJ (1987) Evolution and escalation – an ecological history of life. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Vermeij GJ, Leighton LR (2003) Does global diversity mean anything? Paleobiology 29:3–7

    Article  Google Scholar 

  • Wagner PJ, Kosnik MA, Lidgard S (2006) Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science 314:1289–1292

    Article  Google Scholar 

  • Walker LJ, Wilkinson BH, Ivany LC (2002) Continental drift and Phanerozoic carbonate accumulation in shallow-shelf and deep-marine settings. J Geol 110:75–87

    Article  Google Scholar 

  • Willis KJ, Whittaker RJ (2002) Species diversity – scale matters. Science 295:1245–1248

    Article  Google Scholar 

  • Wright DH, Patterson BD, Mikkelson GM, Cutler A, Atmar W (1998) A comparative analysis of nested subset patterns of species composition. Oecologia 113:1–20

    Article  Google Scholar 

  • Wright P, Cherns L, Hodges P (2003) Missing molluscs: field testing taphonomic loss in the Mesozoic through early large-scale aragonite dissolution. Geology 31:211–214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Aberhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Aberhan, M., Kiessling, W. (2012). Phanerozoic Marine Biodiversity: A Fresh Look at Data, Methods, Patterns and Processes. In: Talent, J.A. (eds) Earth and Life. International Year of Planet Earth. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3428-1_1

Download citation

Publish with us

Policies and ethics