Skip to main content

Gene Stacking

  • Chapter
  • First Online:

Abstract

A small but increasing proportion of genetically modified crops harbour two or more novel traits due to ‘stacked’ transgenes. A variety of methods can be used to achieve stacking, albeit with limitations. Transgene stacking can potentially widen the scope of current plant genetic manipulation to allow whole new biochemical pathways to be introduced into plants, or to overcome a range of different factors that limit crop yield. Developing and improving methods for multi-gene stacking in plants is an expanding and exciting field of current research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott JC, Barakate A et al. (2002) Simultaneous suppression of multiple genes by single transgenes. Down-regulation of three unrelated lignin biosynthetic genes in tobacco. Plant Physiol 128:844–853

    Article  CAS  PubMed  Google Scholar 

  • Bizily SP, Rugh CL et al. (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Article  CAS  PubMed  Google Scholar 

  • Bock R (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18:100–106

    Article  CAS  PubMed  Google Scholar 

  • Ceriani MF, Marcos JF et al. (1998) Simultaneous accumulation of multiple viral coat proteins from a TEV-NIa based expression vector. Plant Mol Biol 36: 239–248

    Article  CAS  PubMed  Google Scholar 

  • Carlson SR, Rudgers GW et al. (2007) Meiotic transmission of an in vitro–assembled autonomous maize minichromosome. PLoS Genet 3(10): e179. doi:10.1371/journal.pgen.0030179

    Article  Google Scholar 

  • Chen LL, Marmey P et al. (1998) Expression and inheritance of multiple transgenes in rice plants. Nat Biotechnol 16:1060–1064

    Article  CAS  PubMed  Google Scholar 

  • Chen QJ, Zhou HM et al. (2006) A gateway-based platform for multigene plant transformation. Plant Mol Biol 62:927–936

    Article  CAS  PubMed  Google Scholar 

  • Dafny-Yelin M and Tzfira T (2007) delivery of multiple transgenes to plant cells. Plant Physiol 145:1118–1128

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta S, Collins GB et al. (1998) Co-ordinated expression of multiple enzymes in different subcellular compartments of plants. Plant J 16:107–116

    Article  CAS  PubMed  Google Scholar 

  • Donnelly MLL, Luke G et al. (2001a) Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’. J Gen Virol 82:1013–1025

    CAS  PubMed  Google Scholar 

  • Donnelly MLL, Hughes LE et al. (2001b) The ‘cleavage’ activities of Foot-and-MouthDisease Virus 2A site-directed mutants and naturally occurring ‘2A-like’ sequences. J Gen Virol 78:13–21

    Google Scholar 

  • El Amrani A, Barakate A et al. (2004) Coordinate expression and independent subcellular targeting of multiple proteins from a single transgene. Plant Physiol 135:16–24

    Article  CAS  PubMed  Google Scholar 

  • Elmayan T and Vaucheret H (1996) Expression of single copies of a strongly expressed 35S transgene can be silenced post-transcriptionally. Plant J 9:787–797

    Article  CAS  Google Scholar 

  • François IEJA, Broekaert WF et al. (2002a) Different approaches for multi-transgene-stacking in plants. Plant Sci 163:281–295

    Article  Google Scholar 

  • François IEJA, De Bolle MFC et al. (2002b) Processing in transgenic Arabidopsis thaliana plants of polyproteins with linker peptide variants derived from the Impatiens balsamina antimicrobial polyprotein precursor. Plant Physiol Biochem 40:871–879

    Article  Google Scholar 

  • Goderis IJWM, De Bolle MFC et al. (2002) A set of modular plant transformation vectors allowing flexible insertion of up to six expression units. Plant Mol Biol 50:17–27

    Article  CAS  PubMed  Google Scholar 

  • Halpin C (2005) Gene stacking in transgenic plants ‐ the challenge for 21st century plant biotechnology. Plant Biotechnol J 3:141–155

    Article  CAS  PubMed  Google Scholar 

  • Halpin C and Ryan M (2004) Redirecting metabolism by co-ordinate manipulation of multiple genes. Metabolic engineering in the post genomic era. WHV Kholodenko, Horizon Bioscience, pp 377–408

    Google Scholar 

  • Halpin C, Cooke SE et al. (1999) Self-processing 2A-polyproteins – a system for co-ordinate expression of multiple proteins in transgenic plants. Plant J 17:453–459

    Article  CAS  PubMed  Google Scholar 

  • Halpin C, Barakate A et al. (2001) Enabling technologies for manipulating multiple genes on complex pathways. Plant Mol Biol 47:295–310

    Article  CAS  PubMed  Google Scholar 

  • James, C (1997) Global status of transgenic crops: 1997. ISAAA Briefs No. 5. ISAAA: Ithaca, NY

    Google Scholar 

  • James C (1998) Global review of commercialized transgenic crops: 1998. ISAAA Briefs No.8. ISAAA: Ithaca, NY

    Google Scholar 

  • James, C (1999) Global review of commercialized transgenic crops: 1999. ISAAA Briefs No.12: Preview. ISAAA: Ithaca, NY

    Google Scholar 

  • James, C (2000) Global status of commercialized transgenic crops: 1999. ISAAA Briefs No.17. ISAAA: Ithaca, NY

    Google Scholar 

  • James, C (2001) Global status of commercialized transgenic crops: 2000. ISAAA Briefs No. 23. ISAAA: Ithaca, NY

    Google Scholar 

  • James, C (2002) Global status of commercialized transgenic crops: 2002. ISAAA Briefs No. 26. ISAAA: Ithaca, NY

    Google Scholar 

  • James, C (2003) Global status of commercialized biotech/GM crops: 2007. ISAAA Brief No. 30. ISAAA: Ithaca, NY

    Google Scholar 

  • James, C (2004) Preview: global status of commercialized transgenic crops: 2004. ISAAA Briefs No. 32. ISAAA: Ithaca, NY

    Google Scholar 

  • James, C (2005) Global status of commercialized biotech/GM crops: 2007. ISAAA Brief No. 34. ISAAA: Ithaca, NY

    Google Scholar 

  • James, C (2006) Global status of commercialized biotech/GM crops: 2007. ISAAA Brief No. 35. ISAAA: Ithaca, NY

    Google Scholar 

  • James, C (2007) Preview: global status of commercialized transgenic crops: 2007. ISAAA Brief No. 37. ISAAA: Ithaca, NY

    Google Scholar 

  • Jiang L and Rogers JC (1999) Functional analysis of a Golgi-localized Kex2p-like protease in tobacco suspension culture cells. Plant J 18:23–32

    Article  PubMed  Google Scholar 

  • Kinal H, Park C et al. (1995) Processing and secretion of a virally encoded antifungal toxin in transgenic tobacco plants: evidence for a Kex2p pathway in plants. Plant Cell 7:677–688

    Article  CAS  PubMed  Google Scholar 

  • Lapierre C, Pollet B et al. (1999) Structural alterations of lignins in transgenic poplars wit depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol 119:153–163

    Article  CAS  PubMed  Google Scholar 

  • Levy F, Johnsson N.et al. (1996) Using ubiquitin to follow the metabolic fate of a protein. Proc Natl Acad Sci U S A 93:4907–4912

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Liu YG et al. (2003) Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system. Proc Natl Acad Sci U S A 100:5962–5967

    Article  CAS  PubMed  Google Scholar 

  • Lössl A, Eibl C et al. (2003) Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep 21:891–899

    PubMed  Google Scholar 

  • Lutz A and Maliga P (2007) Construction of marker-free transplastomic plants. Curr Opin Biotechnol 18:107–114

    Article  CAS  PubMed  Google Scholar 

  • Ma C and Mitra A (2002) Expressing multiple genes in a single open reading frame with the 2A region of Foot-and-Mouth Disease Virus as a linker. Mol Breed 9:191–199

    Article  CAS  Google Scholar 

  • Ma JKC, Hiatt A et al. (1995) Generation and assembly of secretory antibodies in plants. Science 268:716–719

    Article  CAS  PubMed  Google Scholar 

  • Marcos JF and Beachy RN (1997) Transgenic accumulation of two plant virus coat proteins on a single self-processing polypeptide. J Gen Virol 78:1771–1778

    CAS  PubMed  Google Scholar 

  • Matzke MA and Matzke AJM (1995) How and why do plants inactivate homologous (trans)genes? Plant Physiol 107:679–685

    CAS  PubMed  Google Scholar 

  • Osborn MJ, Panoskaltis-Mortari A et al. (2005) A Picornaviral 2A-like sequence-based tricistronic vector allowing for high-level therapeutic gene expression coupled to a dual-reporter system. Mol Ther 12:569–574

    Article  CAS  PubMed  Google Scholar 

  • Rosati C, Simoneau P et al. (2003) Engineering of flower color in forsythia by expression of two independently-transformed dihydroflavonol 4-reductase and anthocyanidin synthase genes of the flavonoid pathway. Mol Breed 12:197–208

    Article  CAS  Google Scholar 

  • Ruf S, Karcher D et al. (2007) Determining the transgene containment level provided by chloroplast transformation. Proc Natl Acad Sci U S A 104: 6998–7002

    Article  CAS  PubMed  Google Scholar 

  • Ryan MD and Drew J (1994) Foot-and-Mouth Disease Virus 2A oligopeptide mediated cleavage of an artificial polyprotein. EMBO J 13:928–933

    CAS  PubMed  Google Scholar 

  • Suzuki T and Varshavsky A (1999) Degradation signals in the lysine–asparagine sequence space. EMBO J 18:6017–6026

    Article  CAS  PubMed  Google Scholar 

  • Szymczak AL, Workman CJ et al. (2004) Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 22:589–594

    Article  CAS  PubMed  Google Scholar 

  • Tailor RH, Acland DP et al. (1997) A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsamina is derived from a single precursor protein. J Biol Chem 272:24480–24487

    Article  CAS  PubMed  Google Scholar 

  • Thomson JM, Lafayette PR et al. (2002) Artificial gene-clusters engineered into plants using a vector system based on intron- and intein-encoded endonucleases. In Vitro Cell Dev Biol - Plant 38:537–542

    Article  CAS  Google Scholar 

  • Verma D and Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol 145:1129–1143

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O, Rivas S et al. (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–56

    Article  CAS  PubMed  Google Scholar 

  • Wakasa Y, Yasuda H et al. (2006) High accumulation of bioactive peptide in transgenic rice seeds by expression of introduced multiple genes. Plant Biotechnol J 4:499–510

    CAS  PubMed  Google Scholar 

  • Walker JM, Vierstra RD (2007) A ubiquitin-based vector for the co-ordinated synthesis of multiple proteins in plants. Plant Biotechnol J 5:413–421

    Article  CAS  PubMed  Google Scholar 

  • Woolaway KE, Konstantinos L et al. (2001) The 5ʹ untranslated region of Rhopalosiphum padi Virus contains an internal ribosome entry site which functions effectively in mammalian, plant and insect translation systems. J Virol 75:10244–10249

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Lamb JC et al. (2006) Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci U S A 103:173331–173336

    Google Scholar 

  • Yu W, Han F et al. (2007) Construction and behaviour of engineered minichromosomes in maize. Proc Natl Acad Sci U S A 104:8924–8929

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Halpin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Douglas, E., Halpin, C. (2010). Gene Stacking. In: Jain, S., Brar, D. (eds) Molecular Techniques in Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2967-6_26

Download citation

Publish with us

Policies and ethics