Skip to main content

Non-volcanic Tremor: A Window into the Roots of Fault Zones

  • Chapter
  • First Online:

Part of the book series: International Year of Planet Earth ((IYPE))

Abstract

The recent discovery of non-volcanic tremor in Japan and the coincidence of tremor with slow-slip in Cascadia have made earth scientists reevaluate our models for the physical processes in subduction zones and on faults in general. Subduction zones have been studied very closely since the discovery of slow-slip and tremor. This has led to the discovery of a number of related phenomena including low frequency earthquakes and very low frequency earthquakes. All of these events fall into what some have called a new class of events that are governed under a different frictional regime than simple brittle failure. While this model is appealing to many, consensus as to exactly what process generates tremor has yet to be reached. Tremor and related events also provide a window into the deep roots of subduction zones, a poorly understood region that is largely devoid of seismicity. Given that such fundamental questions remain about non-volcanic tremor, slow-slip, and the region in which they occur, we expect that this will be a fruitful field for a long time to come.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguiar, A.C, T.I. Melbourne, and C.W. Scrivner (2009), Moment release rate of Cascadia tremor constrained by GPS, J. Geophys. Res., 114, B00A05, doi:10.1029/2008JB005909.

    Google Scholar 

  • Aki, K. and P.G. Richards (2002), Quantitative Seismology, 2nd Edition, University Science Books, Sausalito.

    Google Scholar 

  • Anderson, R.N. (1980), Phase changes and the frequency-magnitude distribution in the upper plane of the deep seimic zone beneath Tohoku, Japan, J. Geophys. Res., 85, 1389–1398.

    Google Scholar 

  • Audet, P., M.G. Bostock, N.I. Christensen, and S.M. Peacock (2009), Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing, Nature, 457, 76–78, doi:10.1038/nature07650.

    Google Scholar 

  • Brenguier, F, M. Campillo, C. Hadziioannou, N.M. Shapiro, R.M. Nadeau, and E. Larose (2008), Postseismic relaxation along the San Andreas fault investigated with continuous seismological observations, Science, 321, 1478–1481.

    Google Scholar 

  • Brooks, B.A., J.H. Foster, M. Bevis, L.N. Frazer, C.J. Wolfe and M. Behn, (2006), Periodic slow earthquake on the flank of Kilauea volcano, Hawai’I, Earth Planet. Sci. Lett., 246, 207–216.

    Google Scholar 

  • Brooks, B.A., J. Foster, D. Sandwell, C.J. Wolfe, P. Okubo, M. Poland, and D. Myer (2008), Magmatically triggered slow slip at Kilauea Volcano, Hawaii, Science, 321, 1177, doi:10.1126/science.1159007.

    Google Scholar 

  • Brown, J.R., G.C. Beroza, and D. R. Shelly (2008), An autocorrelation method to detect low frequency earthquakes within tremor, Geophys. Res. Lett., 35, L16305, doi:10.1029/2008GL034560.

    Google Scholar 

  • Brown, J.R., G.C. Beroza, S. Ide, K. Ohta, D.R. Shelly, S.Y. Schwartz, W. Rabbel, M. Thorwart, and H. Kao, Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones, Geophys. Res. Lett., in press.

    Google Scholar 

  • Brown, K.M., M.D. Tryon, H.R. DeShon, L.M. Dorman, S.Y. Schwartz (2005). Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone, Earth Planet. Sci. Lett., 238, 189–203.

    Google Scholar 

  • Brudzinski, M.R. and R.M. Allen (2007), Segmentation in episodic tremor and slip all along Cascadia, Geology, 35. 907–910.

    Google Scholar 

  • Brudzinski, M., E. Cabral-Cano, F. Correa-Mora, C. Demets, and B. Marquez-Azua (2007), Slow slip transients along the Oaxaca subduction segment from 1993 to 2007, Geophys. J. Intl., 171, 523–538, doi:10.1111/j1365-246X.2007.03542.x.

    Google Scholar 

  • Burlini, L., G. Di Toro, and P. Meredith (2009), Seismic tremor in subduction zones, Rock Phys. Evidence, Geophys. Res. Lett., 36, L08305, doi:10.1029/2009GL037735.

    Google Scholar 

  • Calvert A. (2004) Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone, Nature, 428, 163–167.

    Google Scholar 

  • Capon, J. (1969). Investigation of long-period noise at the large aperture seismic array, J. Geophys. Res., 74, 3182–3194.

    Google Scholar 

  • Chapman, J. (2008), M.S. Thesis, Central Washington University, Ellensburg, Washington.

    Google Scholar 

  • Chouet, B. (1988). Resonance of a fluid driven crack: Radiation properties and implications for the source of long-period events and harmonic tremor, J. Geophys. Res., 93, 4375–4400.

    Google Scholar 

  • Cochran, E.S., J.E. Vidale, and S. Tanaka (2004). Earth tides can trigger shallow thrust fault earthquakes, Science, 306, 1164–1166.

    Google Scholar 

  • Cochran, E.S. and J.E. Vidale (2007), Comment on tidal synchronicity of the 26 December 2004 Sumatran earthquake and its aftershocks, Geophys. Res. Lett., 34, l04302, doi:10.1029/2006GL028639.

    Google Scholar 

  • Correa-Mora, F., C. DeMets, E. Cabral-Cano, O. Diaz-Molina, and B. Marquez-Azua (2008), Interplate coupling and transient slip along the subduction interface beneath Oaxaca, Mexico, Geophys. J. Int. 175, 269–290, doi:10.1111/j.1365-246X.2008.03910.x

    Google Scholar 

  • Delahaye, E.J., J. Townend, M.E. Reyners, and G. Rogers (2009), Microseismicity but no tremor accompanying slow slip in the Hikurangi subduction zone, New Zealand, Earth Planet. Sci. Lett., 277, 21–28.

    Google Scholar 

  • Dragert, H., K. Wang, and T.S. James (2001), A silent slip event on the deeper Cascadia subduction interface. Science, 292, 1525–1528.

    Google Scholar 

  • Dragert, H., K. Wang and G. Rogers (2004), Geodetic and seismic signatures of episodic tremor and slip in the northern Cascadia subduction zone, Earth Planet. Space, 56, 1143–1150.

    Google Scholar 

  • Ellsworth, W.L., M.V. Matthews, R.M. Nadeau, S.P. Nishenko, P.A. Reasenber, R.W. Simpson (1999), A Physically-based earthquake recurrence model for estimation of long-trerm earthquake probabilities, U.S. Geol. Surv. Open-File Rept. 99–522.

    Google Scholar 

  • Filson, J. (1975), Array seismology. Ann. Rev. Earth Plaet. Sci., 3, 157–181.

    Google Scholar 

  • Fletcher, J.B., P. Spudich, and L. Baker (2006), Rupture propagation of the 2004 Parkfield, California earthquake from observations at the UPSAR, Bull. Seismol. Soc. Am., 96, 129–142.

    Google Scholar 

  • Ghosh, A., J.E. Vidale, Z. Peng, K.C. Creager, and H. Houston, Complex non-volcanic tremor near Parkfield, California, triggered by the great 2004 Sumatra earthquake, J. Geophys. Res., in press (a).

    Google Scholar 

  • Ghosh, A., J.E. Vidale, J.R. Sweet, K.C. Creager, and A.G. Wech, Tremor patches in Cascadia revealed by seismic array analysis, Geophys. Res. Lett. (in press (b)).

    Google Scholar 

  • Gibbons, S.J. and F. Ringdal (2006), The detection of low magnitude seismic events using array-based waveform correlation, Geophys. J. Int., 165, 149–166.

    Google Scholar 

  • Goldstein, P. and R.J. Archuleta (1987), Array analysis of seismic signals, Geophys. Res. Lett., 14, 13–16.

    Google Scholar 

  • Gomberg, J., J.L. Rubinstein, Z. Peng, K.C. Creager, J.E. Vidale, and P. Bodin, (2008) Widespread triggering on non-volcanic tremor in California, Science, 319, 713.

    Google Scholar 

  • Hacker, B.R., Peacock, S.M., Abers, G.A., and Holloway, S., (2003), Subduction Factory 2. Intermediate-depth earthquakes in subducting slabs are linked to metamorphic dehydration reactions. J. Geophys. Res., 108, doi:10.1029/2001JB001129.

    Google Scholar 

  • Hartzell, S.H. and T.H. Heaton (1983), Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake, Bull. Seismol. Soc. Am., 73, 1553–1583.

    Google Scholar 

  • Heki, K, S. Miyazaki, and H. Tsuji (1997), Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595–598.

    Google Scholar 

  • Hill, D.P (2008), Dynamic stress, coulomb failure, and remote triggering, Bull. Seismol. Soc. Am., 98, 66–92.

    Google Scholar 

  • Hiramatsu, Y., T. Watanabe, and K. Obara (2008), Deep low-frequency tremors as a proxy for slip monitoring at plate inteface, Geophys. Res. Lett., 35, L13304, doi:10.1029/2008GL034342.

    Google Scholar 

  • Hirose, H. and K. Hirahara (2004). A 3-D quasi-static model for a variety of slip behaviors on a subduction fault, PAGEOPH , 161, 2417–2431.

    Google Scholar 

  • Hirose, H. and K. Obara (2005), Repeating short- and long-term slow slip events with deep tremor activity, around the Bungo channel region, southwest Japan, Earth Planet. Space, 57, 961–972.

    Google Scholar 

  • Hirose, H. and K. Obara (2006), Short-term slow slip and correlated tremor episodes in the Tokai region, central Japan, Geophys. Res. Lett., 33, L17311, doi:10.1029/2006GL026579.

    Google Scholar 

  • Hirose, H., K. Hirahara, F. Kimata, N. Fujii, and S. Miyazaki (1999), A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, southwest Japan. Geophys. Res. Lett. 26, 3237–3240.

    Google Scholar 

  • Hirose, H., H. Kao, and K. Obara (2006). Comparative study of nonvolcanic tremor locations in the Cascadia subduction zone using two different methods, Eos Trans. AGU, 87, Fall Meet. Suppl. Abstract T41A-1533.

    Google Scholar 

  • Ide, S., D. R. Shelly, and G. C. Beroza (2007a), Mechanism of deep low frequency earthquakes: Further evidence that deep non-volcanic tremor is generated by shear slip on the plate interface, Geophys. Res. Lett., 34, L03308, doi:10.1029/2006GL028890.

    Google Scholar 

  • Ide, S., G. C. Beroza, D. R. Shelly, and T. Uchide (2007b), A new scaling law for slow earthquakes, Nature, 447, 76–79.

    Google Scholar 

  • Ide, S. (2008), A Brownian walk model for slow earthquakes, Geophys. Res. Lett., 35, doi:10.1029/2008GL034821.

    Google Scholar 

  • Ide S., Imanishi K, Yoshida Y., Beroza G.C., and Shelly D.R. (2008), Bridging the gap between seismically and geodetically detected slow earthquakes, Geophys. Res. Lett., 35, L10305, doi:10.1029/2008GL034014.

    Google Scholar 

  • Iglesias, A., S.K. Singh, A.R. Lowry, M. Santoyo, V. Kostoglodov, K.M. Larson, S.I. Fracno-Sanchez (2004), The silent earthquake of 2002 in the Guerrero seismic gap, Mexico (Mw=7.6): Inversion of slip on the plate interface and some implications, Geofisica Int., 43, 309–317.

    Google Scholar 

  • Ishii, M., P. M. Shearer, H. Houston, and J. E. Vidale (2005), Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array, Nature, 435, doi: 10.1038/nature03675.

    Google Scholar 

  • Ito Y., K. Obara, K. Shiomi, S. Sekine, and H. Hirose (2007), Slow earthquakes coincident with episodic tremors and slow slip events, Science, 315, 503–506, doi:0.1126/science.1134454.

    Google Scholar 

  • Johnston, M.J.S., R.D. Borcherdt, A.T. Linde, and M.T. Gladwin (2006), Continuous borehole strain and pore pressure in the near field of the 28 September 2004 M 6.0 Parkfield, California, earthquake: Implications for nucleation, fault response, earthquake prediction, and tremor, Bull. Seismol. Soc. Am., 96, S56–S72.

    Google Scholar 

  • Julian, B.R. (2000), Period doubling and other nonlinear phenomena in volcanic earthquakes and tremor, J. Volcanol. Geothermal Res., 101, 19–26.

    Google Scholar 

  • Julian, B. R. (2002), Seismological Detectic of Slab Metamorphism, Science, 296, 1625–1626.

    Google Scholar 

  • Kao, H. and S-J. Shan (2004), The source-scanning algorithm: Mapping the distribution of seismic sources in time and space. Geophys. J. Intl. 157, 589–594.

    Google Scholar 

  • Kao, H., S. Shan, H. Dragert, G. Rogers, J. F. Cassidy, and K. Ramachandran (2005), A wide depth distribution of seismic tremors along the northern Cascadia margin, Nature, 436, 841–844.

    Google Scholar 

  • Kao, H. S-JShan, H. Dragert, G. Rogers, J.F. Cassidy, K. Wang, T.S. James, and K. Ramachandran (2006), Spatial-temporal patterns of seismic tremors in northern Cascadia. J. Geophys. Res., 111, doi:10.1029/2005JB003727.

    Google Scholar 

  • Kao, H., P. J. Thompson, G. Rogers, H. Dragert, and G. Spence (2007a), Automatic detection and characterization of seismic tremors in northern Cascadia, Geophys. Res. Lett., 34, L16313, doi:10.1029/2007GL030822.

    Google Scholar 

  • Kao, H., S.-J. Shan, G. Rogers, and H. Dragert (2007b), Migration characteristics of seismic tremors in the northern Cascadia margin, Geophys. Res. Lett., 34, L03304, doi:10.1029/2006GL028430.

    Google Scholar 

  • Katsumata, A., and N. Kamaya (2003), Low-frequency continuous tremor around the Moho discontinuity away from volcanoes in the southwest Japan, Geophys. Res. Lett. 30, doi:10.1029/2002GL015981.

    Google Scholar 

  • Kawasaki I., Asai Y., Tamura Y., Sagiya T., Mikami N., Okada Y., Sakata M., and Kasahara M., (1995), The 1992 Sanriku-Oki, Japan, ultra-slow earthquake, J. Phys. Earth, 43, 105–116.

    Google Scholar 

  • Kawasaki, I., Y.Asal, and Y. Tamura, (2001), Space-time distribution of interplate moment release including slow earthquakes and the seismo-geodetic coupling in the Sanriku-oki region along the Japan trench, Tectonophysics, 330, 267–283.

    Google Scholar 

  • Kirby, S., K. Wang, and T. Brocher (2002), A possible deep, long-term source for water in the Northern San Andreas Fualt System: A ghost of Cascadia subduction past? Eos Trans. AGU, 83, Fall Meet. Suppl., Abstract S22B-1038.

    Google Scholar 

  • Kodaira, S., T. Iidaka, A. Kato, J.-O. Park, T. Iwassaki, and Y. Kaneda (2004), High pore fluid pressure may cause silent slip in the Nankai Trough, Science, 304, 1295–1298.

    Google Scholar 

  • Kostoglodov, V., S.K. Singh, J.A. Santiago, S.I. Franco, K.M. Larson, A.R. Lowry, and R. Bilham (2003), A large silent earthquake in the Guerrero seismic gap, Mexico, Geophys. Res. Lett., 30, doi:10.1029/2003GL017219.

    Google Scholar 

  • Kuroki, H., H.M. Ito, H. Takayama, and A. Yoshida (2004). 3-D simulation of the occurrence of slow slip events in the Tokai region with a rate- and state-dependent friction law, Bull. Seismol. Soc. Am., 94, 2037–2050.

    Google Scholar 

  • La Rocca, M., W. McCausland, D. Galluzo, S. Malone, G. Saccorotti, and E. Del Pezzo (2005). Array measurements of deep tremor signals in the Cascadia subduction zone, Geophys. Res. Lett., 32, L21319, doi:10.1029/2005GL023974.

    Google Scholar 

  • La Rocca, M., D. Galluzzo, S. Malone, W. McCausland, G. Saccorotti, E. Del Pezzo (2008). Testing small-aperture array analysis on well-located earthquakes, and application to the location of deep tremor, Bull. Seismol. Soc. Am., 93, 620–635.

    Google Scholar 

  • La Rocca, M., K.C. Creager, D. Galluzzo, S. Malone, J.E. Vidale, J.R. Sweet, and A.G. Wech (2009), Cascadia tremor located near plate interface constrained by S minus P wave times, Science, 323, 620–623, doi:10.1126/science.1167112.

    Google Scholar 

  • Lambert, A., H. Kao, G. Rogers, and N. Courtier (2009), Correlation of tremor activity with tidal stress in the northern Cascadia subduction zone, J. Geophys. Res., 114, B00A08, doi:10.1029/2008JB006038.

    Google Scholar 

  • Larson, K.M., V. Kostoglodov, S. Miyazaki, and J.A.S. Santiago (2007), The 2006 aseismic slow slip event in Guerrero, Mexico: New results from GPS, Geophys. Res. Lett., 34, L13309, doi:10.1029/2007GL029912.

    Google Scholar 

  • Liu, Y. and J. R. Rice (2005), Aseismic slip transients emerge spontaneously in three-dimensional rate and state modeling of subduction earthquake sequences, J. Geophys. Res., 110, doi:10.1029/2004JB003424.

    Google Scholar 

  • Liu, Y. and J. R. Rice (2007), Spontaneous and triggered aseismic deformation transients in a subduction fault model, J. Geophys. Res., 12, B09404, doi:10.1029/2007JB004930.

    Google Scholar 

  • Liu, Y., J.R. Rice, and K. M. Larson (2007), Seismicity variations associated with aseismic transients in Guerrero, Mexico, 1995–2006, Earth Planet. Sci. Lett., 262, 493–504.

    Google Scholar 

  • Lowry, A.R. (2006). Resonant slow fault slip in subduction zones forced by climatic load stress, Nature, 442, 802–805.

    Google Scholar 

  • Lowry, A.R., K.M. Larson, V. Kostoglodov, and R. Bilham (2001), Transient fault slip in Guerrero, Southern Mexico, Geophys. Res. Lett., 28, 3753–3756.

    Google Scholar 

  • Matsubara, M., K. Obara, and K. Kashara (2009), High-VP/VS zone accompanying non-volcanic tremors and slow-slip events beneath southwestern Japan, Tectonophysics, 472, 6–17, doi:10.1016/j.tecto.2008.06.013.

    Google Scholar 

  • Mazzoti, S. and J. Adams (2004), Variability of near-term probability for the next great earthquake on the Cascadia subduction zone, Bull. Seismol. Soc. Am., 94, 1954–1959.

    Google Scholar 

  • McCausland, W., S. Malone and D. Johnson (2005). Temporal and spatial occurrence of deep non-volcanic tremor: From Washington to Northern California, Geophys. Res. Lett. 32, doi:10.1029/2005GL024349.

    Google Scholar 

  • McCaffrey R, Wallace L.M., and Beavan J (2008), Slow slip and frictional transition at low temperature at the Hikurangi subduction zone, Nat. Geosci., 1, 316–320.

    Google Scholar 

  • McCaffrey, R. (2009), Time-dependent inversion of three-component continuous GPS for steady and transient sources in northern Cascadia, Geophys. Res. Lett., 36, L07304, doi:10.1029/2008GL036784.

    Google Scholar 

  • McNutt S.R. (2005), Volcanic Seismology, Ann. Rev. Earth Plaet. Sci., 32:461–491, doi:10.1146/annurev.earth.33.092203.122459.

    Google Scholar 

  • Meade, B.J. and J.P. Loveless (2009), Predicting the geodetic signature of MW>=8 slow slip events, Geophys. Res. Lett., 36, L01306, doi:10.1029/2008GL03634.

    Google Scholar 

  • Miller, M. M., Melbourne, T., Johnson, D. J. & Sumner, W. Q. (2002) Periodic slow earthquakes from the Cascadia subduction zone. Science 295, 2423.

    Google Scholar 

  • Miyazawa, M. and E. E. Brodsky (2008), Deep low-frequency tremor that correlates with passing surface waves, J. Geophys. Res., 113, B01307, doi:10.1029/2006JB004890.

    Google Scholar 

  • Miyazawa, M., E.E. Brodsky, and J. Mori (2008), Learning from dynamic triggering of low-frequency tremor in subduction zones, Earth Planets Space, 60, e17–e20.

    Google Scholar 

  • Miyazawa, M. and J. Mori, (2005), Detection of triggered deep low-frequency events from the 20032005 Tokachi-oki earthquake, Geophys. Res. Lett., 32, doi:10.1029/2005GL022539.

    Google Scholar 

  • Miyazawa, M. and J. Mori (2006), Evidence suggesting fluid flow beneath Japan due to periodic seismic triggering from the 2004 Sumatra-Andaman earthquake, Geophys. Res. Lett., 33, doi:10.1029/2005GL025087.

    Google Scholar 

  • Montgomery-Brown, E.K., P. Segall, and A. Miklius (2009), Kilauea slow slip events: Identification, source inversions, and relation to seismicity, J. Geophys. Res., 114, B00A03, doi:10.1029/2008JB006074.

    Google Scholar 

  • Nadeau, R., A. Thomas, and R. Burgmann (2008), Tremor-tide correlations at Parkfield, CA, Eos Trans. AGU, 89, Fall Meet Suppl., Abstract U33A-0054.

    Google Scholar 

  • Nadeau, R.M. and A. Guilhem (2009), Nonvolcanic tremor evolution and the San Simeon and Parkfield, California, Earthquakes, Science, 325, 191–193, doi:10.1126/science.1174155.

    Google Scholar 

  • Nadeau, R.M. and T. V. McEvilly (1999), Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science 285, 718–721, DOI: 10.1126/science.285.5428.718.

    Google Scholar 

  • Nadeau, R.M., A. Michelini, R.A. Uhrhammer, D. Dolenc, and T.V. McEvilly (2004). Detailed kinematics, structure, and recurrence of micro-seismicity in the SAFOD target region, Geophys. Res. Lett., 31, L12S08, doi:10.1029/2003GL019409.

    Google Scholar 

  • Nadeau, R. M. & Dolenc, D. (2005) Nonvolcanic tremors deep beneath the San Andreas fault. Science 307, 389; published online 9 December 2004 (10.1126/science.1107142).

    Google Scholar 

  • Nakata, R., N. Suda, and H. Tsuruoka, (2008), Non-volcanic tremor resulting from the combined effect of Earth tides and slow slip events, Nat. Geosci., 1, 676–678, doi:10.1038/ngeo288.

    Google Scholar 

  • Nakatani, M., and C. H. Scholz (2004), Frictional healing of quartz gouge under hydrothermal conditions: 1. Experimental evidence for solution transfer healing mechanism, J. Geophys. Res., 109 B07201, doi:10,1029/2001JB001522.

    Google Scholar 

  • Nugraha, A.D. and J. Mori (2006). Three-dimensional velocity structure in the Bungo Channel and the Shikoku area, Japan, and its relationship to low-frequency earthquakes, Geophys. Res. Lett., 33, L24307, doi:10.1029/2006GL028479.

    Google Scholar 

  • Obara, K. (2002), Nonvolcanic deep tremor associated with subduction in southwest Japan. Science, 296, 1679–1681.

    Google Scholar 

  • Obara, K. (2003), Time sequence of deep low-frequency tremors in the Southwest Japan Subduction Zone: Triggering phenomena and periodic activity, Chigaku Zasshi (J. Geogr.), 112, 837–849 (in Japanese).

    Google Scholar 

  • Obara, K., H. Hirose, F. Yamamizu, and K. Kasahara (2004), Episodic slow slip events accompanied by non-volcanic tremors in southwest Japan subduction zone. Geophys. Res. Lett. 31, doi:10.1029/2004GL020848.

    Google Scholar 

  • Obara, K., K. Kasahara, S. Hori, and Y. Okada (2005), A densely distributed highsensitivity seismograph network in Japan: Hi-net by National Research Institute for Earth Science and Disaster Prevention. Rev. Sci. Instrum. 76, doi:10.1063/1.1854197.

    Google Scholar 

  • Ohmi, S. and K. Obara (2002), Deep low-frequency earthquakes beneath the focal region of the Mw 6.7 2000 Western Tottori earthquake, Geophys. Res. Lett., 29, doi:10.1029/2001GL014469.

    Google Scholar 

  • Ohmi, S., I. Hirose, and J. Mori (2004), Deep low-frequency earthquakes near the downward extension of the seismogenic fault of the 2000 Western Tottori earthquake, Earth Planets Space, 56, 1185–1189.

    Google Scholar 

  • Ohta, Y., J. T. Freymueller, S. Hreinsdóttir, and H. Suito, (2006), A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone, Earth Planet. Sci. Lett., 247, 108–116.

    Google Scholar 

  • Ohta, K., and S. Ide (2008), A precise hypocenter determination method using network correlation coefficients and its application to deep low frequency earthquakes, Earth Planets. Space, 60, 877–882.

    Google Scholar 

  • Ozawa, S., M. Murakami, M. Kaidzu, T Tada, T. Sagiya, Y. Hatanaka, H. Yarai, and T. Nishimura (2002), Detection and monitoring of ongoing aseismic slip in the Tokai region, central Japan, Science, 298, 1009–1012.

    Google Scholar 

  • Ozawa, S., S. Miyazaki, Y. Hatanaka, T. Imakiire, M. Kaidzu, M. Murakami (2003), Characteristic silent earthquakes in the eastern part of the Boso peninsula, Central Japan, Geophys. Res. Lett., 30, doi:10.1029/2002GL016665.

    Google Scholar 

  • Payero, J.S., V. Kostoglodov, N. Shapiro, T. Mikumo, A. Iglesia, X. Perez-Campos, R.W. Clayton (2008), Nonvolcanic tremor observed in the Mexican subduction zone, Geophys. Res. Lett., 35, L07305, doi:10.1029/2007GL032877.

    Google Scholar 

  • Peacock, S.M. (2009), Thermal and metamorphic environment of subduction zone episodic tremor and slip, J. Geophys. Res., 114, B00A07, doi:10.1029/2008JB005978.

    Google Scholar 

  • Peacock, S. M. & Wang, K. (1999) Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan. Science 286, 937–939.

    Google Scholar 

  • Peng, Z. and K. Chao (2008), Non-volcanic tremor beneath the Central Range in Taiwan triggered by the 2001 MW7.8 Kunlun earthquake, Geophys. J. Int., 175, 825–829, doi:10.1111/j.1365-246X.2008.03886.x.

    Google Scholar 

  • Peng, Z., J.E. Vidale, K.C. Creager, J.L. Rubinstein, J. Gomberg, and P. Bodin (2008), Strong tremor near Parkfield, CA excited by the 2002 Denali Fault earthquake, Geophys. Res. Lett., 35, L23305, doi:10.1029/2008GL036080.

    Google Scholar 

  • Peng, Z., J.E. Vidale, A.G. Wech, R.M. Nadeau, and K.C Creager (2009), Remote triggering of tremor along the San Andreas Fault in central California, J. Geophys. Res., 114, B00A06, doi:10.1029/2008JB006049.

    Google Scholar 

  • Peterson, C.L. and D.H. Christensen (2009). Possible relationship between nonvolcanic tremor and the 1998–2001 slow slip event, south central Alaska, J. Geophys. Res., 114, B06302, doi:10.1029/2008JB006096.

    Google Scholar 

  • Poupinet, G., W. L. Ellsworth, and J. Fréchet (1984), Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California, J. Geophys. Res., 89, 5719–5731.

    Google Scholar 

  • Reyners, M. and S. Bannister (2007), Earthquakes triggered by slow slip at the plate interface in the Hikurangi subduction zone, New Zealand, Geophys. Res. Lett., 34, L14305, doi:10.1029/2007GL030511.

    Google Scholar 

  • Rogers, G. and H. Dragert (2003), Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. Science, 300, 1942–1943.

    Google Scholar 

  • Rogers, G. (2007), Episodic Tremor and Slip in Northern Cascadia – Going Back in Time, paper presented at the 2007 Seismol. Soc. Am. Annual Meeting, Waikoloa, Hawaii., 11–13 April.

    Google Scholar 

  • Royle G.T, Calvert A.J., Kao H (2006), Observations of non-volcanic tremor during the northern Cascadia slow slip event in February 2002, Geophys. Res. Lett., 33, L18313, doi10.1029/2006GL027316.

    Google Scholar 

  • Rubin, A.M., D. Gillard, and J.-L. Got (1999), Streaks of microearthquakes along creeping faults. Nature, 400, 635–641.

    Google Scholar 

  • Rubin, A.M. and P. Segall (2007), Episodic slow-slip transients and rate-and-data friction, Eos Trans. AGU, 88, Fall Meet. Suppl., Abstract T21A-0374.

    Google Scholar 

  • Rubin, A.M. (2008), Episodic slow slip events and rate-and-state friction, J. Geophys. Res., 113, B11414, doi:10.1029/2008JB005642.

    Google Scholar 

  • Rubinstein, J.L., J.E. Vidale, J. Gomberg, P. Bodin, K.C. Creager and S.D. Malone (2007), Non-volcanic tremor driven by large transient shear stresses, Nature, 448, doi:10.1038/nature06017, 579–582.

    Google Scholar 

  • Rubinstein, J.L., M. La Rocca, J.E. Vidale, K.C. Creager, and A.G. Wech (2008), Tidal modulation of non-volcanic tremor, Science, 319, 186–189.

    Google Scholar 

  • Rubinstein, J.L., J. Gomberg, J.E. Vidale, A.G. Wech, H. Kao, K.C. Creager, and G. Rogers (2009), Seismic wave triggering of nonvolcanic tremor, episodic tremor and slip, and earthquakes on Vancouver Island, J. Geophys. Res., 114, B00A01, doi:10.1029/2008JB005875.

    Google Scholar 

  • Schaff, D. P., G. C. Beroza, and B. E. Shaw (1998), Postseismic response of repeating aftershocks, Geophys. Res. Lett., 25, 4549–4552.

    Google Scholar 

  • Schaff, D.P., G.H.R. Bokelmann, W.L. Ellsworth, E. Zanzerkia, F. Waldhauser, and G.C. Beroza (2004), Optimizing correlation techniques for improved earthquake location, Bull. Seism. Soc. Am., 94, 705–721, doi:10.1785/0120020238.

    Google Scholar 

  • Schwartz, S.Y., J.I. Walter, T.H. Dixon, K.C. Psencik, M. Protti, V. Gonzalez, M. Thorwart, and W. Rabbel (2008), Slow slip and tremor detected at the northern Costa Rica seismogenic zone, Eos Trans. AGU, 89, Fall. Meet. Suppl., Abstract U31B-06.

    Google Scholar 

  • Schwartz, S.Y. and J.M. Rokosky (2007), Slow slip events and seismic tremor at circum-pacific subduction zones, Rev. Geophys. 45, RG3004, doi:10.1029/2006RG000208.

    Google Scholar 

  • Segall, P. and A.M. Rubin (2007), Dilatency stabilization of frictional sliding as a mechanism for slow slip events, Eos Trans. AGU, 88, Fall Meet. Suppl., Abstract T13F-08.

    Google Scholar 

  • Segall, P., E.K. Desmarais, D. Shelly, A. Miklius, and P. Cervelli (2006), Earthquakes triggered by silent slip events on Kilauea volcano, Hawaii, Nature, 442, 71–74.

    Google Scholar 

  • Seno, T. and T. Yamasaki (2003), Low-frequency tremors, intraslab and interplate earthquakes in Southwest Japan – from a viewpoint of slab dehydration. Geophys. Res. Lett. 30, doi:10.1029/2003GL018349.

    Google Scholar 

  • Seno, T. (2005), Variation of downdip limit of the seismogenic zone near the Japanese islands, Implications for the serpentinization mechanism of the forearc mantle wedge, Earth Planet. Sci. Lett., 231, 249–262.

    Google Scholar 

  • Shearer, P.M. (1999), Introduction to Seismology, Cambridge University Press, Cambridge.

    Google Scholar 

  • Shelly, D.R., Possible deep fault slip preceding the 2004 Parkfield earthquake, inferred from detailed observations of tectonic tremor, Geophys. Res. Lett. (in press).

    Google Scholar 

  • Shelly, D. R., G. C. Beroza, S. Ide, and S. Nakamula (2006), Low-frequency earthquakes in Shikoku, Japan and their relationship to episodic tremor and slip. Nature 442, 188–191.

    Google Scholar 

  • Shelly, D. R., Beroza, G. C. & Ide, S. (2007a), Non-volcanic tremor and low frequency earthquake swarms. Nature, 446, 305–307.

    Google Scholar 

  • Shelly, D.R., G.C. Beroza, and S. Ide (2007b), Complex evolution of transient slip derived from precise tremor locations in western Shikoku, Japan. Geochem. Geophys. Geosyst., 8, Q10014, doi:10.1029/2007GC001640.

    Google Scholar 

  • Shelly, D.R., W.L. Ellsworth, T. Ryberg, C. Haberland, G.S. Fuis, J. Murphy, R.M. Nadeau, and R. Burgmann (2009), Precise location of San Andreas Fault tremors near Cholame, California using seismometer clusters: Slip on the deep extension of the fault?, Geophys. Res. Lett., 36, L01303, doi:10.1029/2008GL036367.

    Google Scholar 

  • Shen, Z-K., Q. Wang, R. Burgmann, Y. Wan, and J. Ning (2005). Pole-tide modulation of slow slip events at circum-Pacific subduction zones. Bull. Seismol. Soc. Am., 95, 2009–2015.

    Google Scholar 

  • Shibazaki, B., and Y. Iio (2003), On the physical mechanism of silent slip events along the deeper part of the seismogenic zone, Geophys. Res. Lett., 30(9), 1489, doi:10.1029/2003GL017047.

    Google Scholar 

  • Shibazaki B, Shimamoto T (2007) Modelling of short-interval silent slip events in deeper subduction interfaces considering the frictional properties at the unstable-stable transition regime. Geophys. J. Intl. 171, 191–205.

    Google Scholar 

  • Shimamoto, T., (1986). Transition between frictional slip and ductile flow for Halite shear zones at room temperature, Science, 231, 711–714.

    Google Scholar 

  • Smith, E.F. and J. Gomberg, A search in strainmeter data for slow slip associated with triggered and ambient tremor near Parkfield, California, J. Geophys. Res., in press.

    Google Scholar 

  • Song, T.-R.A, D.V. Helmberger, M.R. Brudzinski, R.W. Clayton, P. Davis, X. Perez-Campos, S.K. Singh (2009), Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern Mexico, Science, 324, 502–505, doi:10.1126/science.1167595.

    Google Scholar 

  • Spudich, P. and E. Cranswick (1984), Direct observation of rupture propagation during the 1979 Imperial Valley earthquake using a short baseline accelerometer array, Bull. Seismol. Soc. Am., 74, 2083–2114.

    Google Scholar 

  • Suda, N.R., R. Nakata, and T. Kusumi, An automatic monitoring system for non-volcanic tremors in southwest Japan, J. Geophys. Res., in press.

    Google Scholar 

  • Sweet, J., K. Creager, J. Vidale, A. Ghosh, M. Nichols, T. Pratt, and A. Wech (2008), Low Frequency Earthquakes in Cascadia, paper presented at 2008 IRIS Workshop, Stevenson Washington, 9 June 2008.

    Google Scholar 

  • Szeliga, W., T.I. Melbourne, M.M. Miller, and V.M. Santillan (2004), Southern Cascadia episodic slow earthquakes, Geophys. Res. Lett., L16602, doi:10.1029/2004GL020824.

    Google Scholar 

  • Szeliga, W., T. Melbourne, M. Santillan, and M. Miller (2008), GPS constraints on 34 slow slip events within the Cascadia subduction zone, 1997–2005, J. Geophys. Res., 113, B04404, doi:10.1029/2007JB004948.

    Google Scholar 

  • Tanaka, S., M. Ohtake, and H. Sato (2002), Evidence for tidal triggering of earthquakes as revealed from statistical analysis of global data, J. Geophys. Res., 107(B10), 221, doi:10.1029/2001JB001577.

    Google Scholar 

  • Uchida, N., T. Matsuzawa, W. L. Ellsworth, K. Imanishi, T. Okada, and A. Hasegawa (2007), Source parameters of a M4.8 and its accompanying repeating earthquakes off Kamaishi, NE Japan - implications for the hierarchical structure of asperities and earthquake cycle, Geophys. Res. Lett., 34, doi:10.1029/2007GL031263.

    Google Scholar 

  • Vidale, J.E. (1988). Finite-difference travel time calculation, Bull. Seismol. Soc. Am., 78, 2062–2076.

    Google Scholar 

  • Vidale, J.E., D.C. Agnew, M.J.S. Johnston, and D.H. Oppenheimer (1998). Absence of earthquake correlation with Earth tides: An indication of high preseismic fault stress rate, J. Geophys. Res., 103, 7247–7263.

    Google Scholar 

  • Voisin, C., J-R. Grasso, E. Larose, and F. Renard (2008), Evolution of seismic signals and slip patterns along subduction zones: Insights from a friction lab scale experiment, Geophys. Res. Lett., 35, L08302, doi:10.1029/2008GL033356.

    Google Scholar 

  • Waldhauser, F., W. L. Ellsworth, D. P. Schaff, and A. Cole (2004), Streaks, multiplets, and holes: High-resolution spatio-temporal behavior of Parkfield seismicity. Geophys. Res. Lett., 31, doi:10.1029/2004GL02069.

    Google Scholar 

  • Wang, Z., D. Zhao, O.P. Mishra, and A. Yamada (2006), Structural heterogeneity and its implications for the low frequency tremors in Southwest Japan, Earth. Planet. Sci. Lett., 251, 66–78.

    Google Scholar 

  • Wang, K., H. Dragert, H. Kao, and E Roeloffs (2008), Characterizing an “uncharacteristic” ETS event in northern Cascadia, Geophys. Res. Lett., 35, L15303, doi:10.1029/2008GL034415.

    Google Scholar 

  • Watanabe T, Hiramatsu Y, and Obara K (2007) Scaling relationship between the duration and the amplitude of non-volcanic deep low-frequency tremors, Geophys. Res. Lett., 34, L07305, doi:10.1029/2007GL029391.

    Google Scholar 

  • Wech A. G., K. C. Creager (2007), Cascadia tremor polarization evidence for plate interface slip, Geophys. Res. Lett., 34, L22306, doi:10.1029/2007GL031167.

    Google Scholar 

  • Wech, A.G. and K.C. Creager (2008), Automated detection and location of Cascadia tremor, Geophys. Res. Lett., 35, L20302, doi:10.1029/2008GL035458.

    Google Scholar 

  • Wilcock, W.S.D. (2001). Tidal triggering of microearthquakes on the Juan de Fuca Ridge, Geophys. Res. Lett., 28, 3999–4002.

    Google Scholar 

  • Wolfe, C.J., B.A. Brooks, J.H. Foster, and P.G. Okubo (2007), Microearthquake streaks and seismicity triggered by slow ear-thquakes on the mobile south flank of Kilauea Volcano, Hawai’I, Geophys. Res. Lett., 34, L23306, doi:10.1029/2007GL031625.

    Google Scholar 

  • Yamasaki T. and T. Seno (2003), Double seismic zone and dehydration embrittlement, J. Geophys. Res., 108, doi:10.1029/2002JB001918.

    Google Scholar 

  • Yoshida, S. and N. Kato (2003). Episodic aseismic slip in a two-degree-of-freedom block-spring model, Geophys. Res. Lett., 30, doi:10.1029/2003GL017439.

    Google Scholar 

  • Yoshida, A., K. Hososno, T. Tsukakoshi, A. Kobayashi, H. Takayama, and S. Wiemer (2006), Change in seismic activity in the Tokai region related to weakening and strengthening of the interplate coupling, Tectonophysics, 417, 17–31.

    Google Scholar 

  • Yoshioka, S., T. Mikumo, V. Kostoglodov, K.M. Larson, A.R. Lowry, and S.K. Singh (2004), Interplate coupling and a recent aseismic slow slip event in the Guerrero seismic gap of the Mexican subduction zone, as deduced from GPS data inversion using a Bayesian information criterio, Phys. Earth Planet. Interior., 146, 513–530.

    Google Scholar 

  • Yoshioka, S., M. Toda, and J. Nakajima (2008), Regionality of deep low-frequency earthquakes associated with subduction of the Philippine Sea plate along the Nankai Trough, southwest Japan, Earth Planet. Sci. Lett., 272, 189–198.

    Google Scholar 

  • Zhang, H. & Thurber, C. H. (2003) Double-difference tomography: The method and its application to the Hayward fault, California. Bull. Seismol. Soc. Am., 93, 1875–1889.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Roland Burgmann, Joan Gomberg, Jeanne Hardebeck, Stephanie Prejean, Tetsuzo Seno, John Vidale, and an anonymous reviewer for their thorough reviews. We also thank Chloe Peterson, Doug Christensen, Xyoli Perez-Campos, and Vladimir Kostoglodov for their help in procuring sample tremor data for Fig. 4. For Fig. 4: data from Mexico was part of the MesoAmerican Subduction Experiment (MASE) project; data from Alaska comes from the Broadband Experiment Across Alaskan Ranges (BEAAR) experiment; data from Parkfield comes from the High Resolution Seismic Network (HRSN); data from Cascadia comes from the Cascadia Arrays For Earthscope experiment (CAFE); and the data from Shikoku, Japan is from the High Sensitivity Seismic Network (Hi-Net).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin L. Rubinstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rubinstein, J.L., Shelly, D.R., Ellsworth, W.L. (2009). Non-volcanic Tremor: A Window into the Roots of Fault Zones. In: Cloetingh, S., Negendank, J. (eds) New Frontiers in Integrated Solid Earth Sciences. International Year of Planet Earth. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2737-5_8

Download citation

Publish with us

Policies and ethics