Skip to main content

Dendritic mRNA Targeting and Translation

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((volume 970))

Abstract

Selective targeting of specific mRNAs into neuronal dendrites and their locally regulated translation at particular cell contact sites contribute to input-specific synaptic plasticity. Thus, individual synapses become decision-making units, which control gene expression in a spatially restricted and nucleus-independent manner. Dendritic targeting of mRNAs is achieved by active, microtubule-dependent transport. For this purpose, mRNAs are packaged into large ribonucleoprotein (RNP) particles containing an array of trans-acting RNA-binding proteins. These are attached to molecular motors, which move their RNP cargo into dendrites. A variety of proteins may be synthesized in dendrites, including signalling and scaffold proteins of the synapse and neurotransmitter receptors. In some cases, such as the alpha subunit of the calcium/calmodulin-dependent protein kinase II (αCaMKII) and the activity-regulated gene of 3.1 kb (Arg3.1, also referred to as activity-regulated cDNA, Arc), their local synthesis at synapses can modulate long-term changes in synaptic efficiency. Local dendritic translation is regulated by several signalling cascades including Akt/mTOR and Erk/MAP kinase pathways, which are triggered by synaptic activity. More recent findings show that miRNAs also play an important role in protein synthesis at synapses. Disruption of local translation control at synapses, as observed in the fragile X syndrome (FXS) and its mouse models and possibly also in autism spectrum disorders, interferes with cognitive abilities in mice and men.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aakalu, G., Smith, W. B., Nguyen, N., Jiang, C., & Schuman, E. M. (2001). Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron, 2, 489–502.

    Google Scholar 

  • Atkins, C. M., Nozaki, N., Shigeri, Y., & Soderling, T. R. (2004). Cytoplasmic polyadenylation element binding protein-dependent protein synthesis is regulated by calcium/calmodulin-dependent protein kinase II. The Journal of Neuroscience, 22, 5193–5201.

    Google Scholar 

  • Banerjee, S., Neveu, P., & Kosik, K. S. (2009). A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation. Neuron, 6, 871–884.

    Google Scholar 

  • Banko, J. L., Hou, L., & Klann, E. (2004). NMDA receptor activation results in PKA- and ERK-dependent Mnk1 activation and increased eIF4E phosphorylation in hippocampal area CA1. Journal of Neurochemistry, 2, 462–470.

    Google Scholar 

  • Banko, J. L., Hou, L., Poulin, F., Sonenberg, N., & Klann, E. (2006). Regulation of eukaryotic initiation factor 4E by converging signaling pathways during metabotropic glutamate receptor-dependent long-term depression. The Journal of Neuroscience, 8, 2167–2173.

    Google Scholar 

  • Barnard, D. C., Ryan, K., Manley, J. L., & Richter, J. D. (2004). Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell, 5, 641–651.

    Google Scholar 

  • Baron, M. K., Boeckers, T. M., Vaida, B., Faham, S., Gingery, M., Sawaya, M. R., Salyer, D., Gundelfinger, E. D., & Bowie, J. U. (2006). An architectural framework that may lie at the core of the postsynaptic density. Science, 5760, 531–535.

    Google Scholar 

  • Bassell, G. J., & Warren, S. T. (2008). Fragile X syndrome: Loss of local mRNA regulation alters synaptic development and function. Neuron, 2, 201–214.

    Google Scholar 

  • Berkel, S., Marshall, C. R., Weiss, B., Howe, J., Roeth, R., Moog, U., Endris, V., Roberts, W., Szatmari, P., Pinto, D., Bonin, M., Riess, A., Engels, H., Sprengel, R., Scherer, S. W., & Rappold, G. A. (2010). Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nature Genetics, 6, 489–491.

    Google Scholar 

  • Blichenberg, A., Rehbein, M., Muller, R., Garner, C. C., Richter, D., & Kindler, S. (2001). Identification of a cis-acting dendritic targeting element in the mRNA encoding the alpha subunit of Ca2+/calmodulin-dependent protein kinase II. European Journal of Neuroscience, 10, 1881–1888.

    Google Scholar 

  • Böckers, T. M., Segger-Junius, M., Iglauer, P., Bockmann, J., Gundelfinger, E. D., Kreutz, M. R., Richter, D., Kindler, S., & Kreienkamp, H. J. (2004). Differential expression and dendritic transcript localization of Shank family members: Identification of a dendritic targeting element in the 3′ untranslated region of Shank1 mRNA. Molecular and Cellular Neuroscience, 1, 182–190.

    Google Scholar 

  • Bonaglia, M. C., Giorda, R., Borgatti, R., Felisari, G., Gagliardi, C., Selicorni, A., & Zuffardi, O. (2001). Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syndrome. American Journal of Human Genetics, 2, 261–268.

    Google Scholar 

  • Bramham, C. R., & Wells, D. G. (2007). Dendritic mRNA: Transport, translation and function. Nature Reviews Neuroscience, 10, 776–789.

    Google Scholar 

  • Burgin, K. E., Waxham, M. N., Rickling, S., Westgate, S. A., Mobley, W. C., & Kelly, P. T. (1990). In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. The Journal of Neuroscience, 6, 1788–1798.

    Google Scholar 

  • Cajigas, I. J., Will, T., & Schuman, E. M. (2010). Protein homeostasis and synaptic plasticity. The EMBO Journal, 16, 2746–2752.

    Google Scholar 

  • Ceman, S., O’Donnell, W. T., Reed, M., Patton, S., Pohl, J., & Warren, S. T. (2003). Phosphorylation influences the translation state of FMRP-associated polyribosomes. Human Molecular Genetics, 24, 3295–3305.

    Google Scholar 

  • Cheever, A., & Ceman, S. (2009). Translation regulation of mRNAs by the fragile X family of proteins through the microRNA pathway. RNA Biology, 2, 175–178.

    Google Scholar 

  • Chowdhury, S., Shepherd, J. D., Okuno, H., Lyford, G., Petralia, R. S., Plath, N., Kuhl, D., Huganir, R. L., & Worley, P. F. (2006). Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron, 3, 445–459.

    Google Scholar 

  • Costa-Mattioli, M., Sonenberg, N., & Richter, J. D. (2009a). Chapter 8 translational regulatory mechanisms in synaptic plasticity and memory storage. Progress in Molecular Biology and Translational Science, 90, 293–311.

    PubMed  CAS  Google Scholar 

  • Costa-Mattioli, M., Sossin, W. S., Klann, E., & Sonenberg, N. (2009b). Translational control of long-lasting synaptic plasticity and memory. Neuron, 1, 10–26.

    Google Scholar 

  • Dieterich, D. C., Karpova, A., Mikhaylova, M., Zdobnova, I., Konig, I., Landwehr, M., Kreutz, M., Smalla, K. H., Richter, K., Landgraf, P., Reissner, C., Boeckers, T. M., Zuschratter, W., Spilker, C., Seidenbecher, C. I., Garner, C. C., Gundelfinger, E. D., & Kreutz, M. R. (2008). Caldendrin-Jacob: A protein liaison that couples NMDA receptor signalling to the nucleus. PLoS Biology, 2, e34.

    Google Scholar 

  • Durand, C. M., Betancur, C., Boeckers, T. M., Bockmann, J., Chaste, P., Fauchereau, F., Nygren, G., Rastam, M., Gillberg, I. C., Anckarsater, H., Sponheim, E., Goubran-Botros, H., Delorme, R., Chabane, N., Mouren-Simeoni, M. C., de Mas, P., Bieth, E., Roge, B., Heron, D., Burglen, L., Gillberg, C., Leboyer, M., & Bourgeron, T. (2007). Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature Genetics, 1, 25–27.

    Google Scholar 

  • Eberwine, J., & Crino, P. (2001). Analysis of mRNA populations from single live and fixed cells of the central nervous system. Current Protocols in Neuroscience, Unit 5.3.

    Google Scholar 

  • Edbauer, D., Neilson, J. R., Foster, K. A., Wang, C. F., Seeburg, D. P., Batterton, M. N., Tada, T., Dolan, B. M., Sharp, P. A., & Sheng, M. (2010). Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron, 3, 373–384.

    Google Scholar 

  • Falley, K., Schütt, J., Iglauer, P., Menke, K., Maas, C., Kneussel, M., Kindler, S., Wouters, F. S., Richter, D., & Kreienkamp, H. J. (2009). Shank1 mRNA: Dendritic transport by kinesin and translational control by the 5′untranslated region. Traffic, 7, 844–857.

    Google Scholar 

  • Flexner, J. B., Flexner, L. B., & Stellar, E. (1963). Memory in mice as affected by intracerebral puromycin. Science, 141, 57–59.

    PubMed  CAS  Google Scholar 

  • Fukunaga, R., & Hunter, T. (1997). MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. The EMBO Journal, 8, 1921–1933.

    Google Scholar 

  • Gao, Y., Tatavarty, V., Korza, G., Levin, M. K., & Carson, J. H. (2008). Multiplexed dendritic targeting of alpha calcium calmodulin-dependent protein kinase II, neurogranin, and activity-regulated cytoskeleton-associated protein RNAs by the A2 pathway. Molecular Biology of the Cell, 5, 2311–2327.

    Google Scholar 

  • Garner, C. C., Tucker, R. P., & Matus, A. (1988). Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites. Nature, 6200, 674–677.

    Google Scholar 

  • Gelinas, J. N., Banko, J. L., Hou, L., Sonenberg, N., Weeber, E. J., Klann, E., & Nguyen, P. V. (2007). ERK and mTOR signaling couple beta-adrenergic receptors to translation initiation machinery to gate induction of protein synthesis-dependent long-term potentiation. Journal of Biological Chemistry, 37, 27527–27535.

    Google Scholar 

  • Gkogkas, C., Sonenberg, N., & Costa-Mattioli, M. (2010). Translational control mechanisms in long-lasting synaptic plasticity and memory. Journal of Biological Chemistry, 42, 31913–31917.

    Google Scholar 

  • Gong, R., Park, C. S., Abbassi, N. R., & Tang, S. J. (2006). Roles of glutamate receptors and the mammalian target of rapamycin (mTOR) signaling pathway in activity-dependent dendritic protein synthesis in hippocampal neurons. Journal of Biological Chemistry, 27, 18802–18815.

    Google Scholar 

  • Grooms, S. Y., Noh, K. M., Regis, R., Bassell, G. J., Bryan, M. K., Carroll, R. C., & Zukin, R. S. (2006). Activity bidirectionally regulates AMPA receptor mRNA abundance in dendrites of hippocampal neurons. The Journal of Neuroscience, 32, 8339–8351.

    Google Scholar 

  • Gross, C., Nakamoto, M., Yao, X., Chan, C. B., Yim, S. Y., Ye, K., Warren, S. T., & Bassell, G. J. (2010). Excess phosphoinositide 3-kinase subunit synthesis and activity as a novel therapeutic target in fragile X syndrome. The Journal of Neuroscience, 32, 10624–10638.

    Google Scholar 

  • Gundelfinger, E. D., Boeckers, T. M., Baron, M. K., & Bowie, J. U. (2006). A role for zinc in postsynaptic density asSAMbly and plasticity? Trends in Biochemical Sciences, 7, 366–373.

    Google Scholar 

  • Hanus, C., & Ehlers, M. D. (2008). Secretory outposts for the local processing of membrane cargo in neuronal dendrites. Traffic, 9, 1437–1445.

    PubMed  CAS  Google Scholar 

  • Herb, A., Wisden, W., Catania, M., Marechal, D., Dresse, A., & Seeburg, P. (1997). Prominent dendritic localization in forebrain neurons of a novel mRNA and its product, dendrin. Molecular and Cellular Neuroscience, 8, 367–374.

    PubMed  CAS  Google Scholar 

  • Huang, Y. S., Carson, J. H., Barbarese, E., & Richter, J. D. (2003). Facilitation of dendritic mRNA transport by CPEB. Genes & Development, 5, 638–653.

    Google Scholar 

  • Huang, Y. S., Jung, M. Y., Sarkissian, M., & Richter, J. D. (2002). N-methyl-D-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB phosphorylation and alpha CaMKII mRNA polyadenylation at synapses. The EMBO Journal, 9, 2139–2148.

    Google Scholar 

  • Huber, K. M., Gallagher, S. M., Warren, S. T., & Bear, M. F. (2002). Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proceedings of the National Academy of Sciences of the United States of America, 11, 7746–7750.

    Google Scholar 

  • Iacoangeli, A., Rozhdestvensky, T. S., Dolzhanskaya, N., Tournier, B., Schütt, J., Brosius, J., Denman, R. B., Khandjian, E. W., Kindler, S., & Tiedge, H. (2008a). On BC1 RNA and the fragile X mental retardation protein. Proceedings of the National Academy of Sciences of the United States of America, 2, 734–739.

    Google Scholar 

  • Iacoangeli, A., Rozhdestvensky, T. S., Dolzhanskaya, N., Tournier, B., Schütt, J., Brosius, J., Denman, R. B., Khandjian, E. W., Kindler, S., & Tiedge, H. (2008b). Reply to Bagni: On BC1 RNA and the fragile X mental retardation protein. Proceedings of the National Academy of Sciences of the United States of America, 22, E29.

    Google Scholar 

  • Iijima, T., Imai, T., Kimura, Y., Bernstein, A., Okano, H. J., Yuzaki, M., & Okano, H. (2005). Hzf protein regulates dendritic localization and BDNF-induced translation of type 1 inositol 1,4,5-trisphosphate receptor mRNA. Proceedings of the National Academy of Sciences of the United States of America, 47, 17190–17195.

    Google Scholar 

  • Jackson, R. J., Hellen, C. U., & Pestova, T. V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Reviews: Molecular Cell Biology, 2, 113–127.

    Google Scholar 

  • Jin, P., Alisch, R. S., & Warren, S. T. (2004). RNA and microRNAs in fragile X mental retardation. Nature Cell Biology, 11, 1048–1053.

    Google Scholar 

  • Ju, W., Morishita, W., Tsui, J., Gaietta, G., Deerinck, T. J., Adams, S. R., Garner, C. C., Tsien, R. Y., Ellisman, M. H., & Malenka, R. C. (2004). Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nature Neuroscience, 3, 244–253.

    Google Scholar 

  • Kacharmina, J. E., Job, C., Crino, P., & Eberwine, J. (2000). Stimulation of glutamate receptor protein synthesis and membrane insertion within isolated neuronal dendrites. Proceedings of the National Academy of Sciences of the United States of America, 21, 11545–11550.

    Google Scholar 

  • Kanai, Y., Dohmae, N., & Hirokawa, N. (2004). Kinesin transports RNA: Isolation and characterization of an RNA-transporting granule. Neuron, 4, 513–525.

    Google Scholar 

  • Kang, H., & Schuman, E. M. (1996). A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science, 5280, 1402–1406.

    Google Scholar 

  • Kanhema, T., Dagestad, G., Panja, D., Tiron, A., Messaoudi, E., Havik, B., Ying, S. W., Nairn, A. C., Sonenberg, N., & Bramham, C. R. (2006). Dual regulation of translation initiation and peptide chain elongation during BDNF-induced LTP in vivo: Evidence for compartment-specific translation control. Journal of Neurochemistry, 5, 1328–1337.

    Google Scholar 

  • Kelleher, R. J., III, & Bear, M. F. (2008). The autistic neuron: Troubled translation? Cell, 3, 401–406.

    Google Scholar 

  • Kelleher, R. J., III, Govindarajan, A., Jung, H. Y., Kang, H., & Tonegawa, S. (2004). Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell, 3, 467–479.

    Google Scholar 

  • Kim, E., Naisbitt, S., Hsueh, Y. P., Rao, A., Rothschild, A., Craig, A. M., & Sheng, M. (1997). GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. The Journal of Cell Biology, 3, 669–678.

    Google Scholar 

  • Kindler, S., Dieterich, D. C., Schutt, J., Sahin, J., Karpova, A., Mikhaylova, M., Schob, C., Gundelfinger, E. D., Kreienkamp, H. J., & Kreutz, M. R. (2009). Dendritic mRNA targeting of Jacob and N-methyl-d-aspartate-induced nuclear translocation after calpain-mediated proteolysis. Journal of Biological Chemistry, 37, 25431–25440.

    Google Scholar 

  • Kindler, S., Rehbein, M., Classen, B., Richter, D., & Böckers, T. M. (2004). Distinct spatiotemporal expression of SAPAP transcripts in the developing rat brain: A novel dendritically localized mRNA. Brain Research: Molecular Brain Research, 1, 14–21.

    Google Scholar 

  • Kindler, S., Wang, H., Richter, D., & Tiedge, H. (2005). RNA transport and local control of translation. Annual Review of Cell and Developmental Biology, 21, 223–245.

    PubMed  CAS  Google Scholar 

  • Kobayashi, H., Yamamoto, S., Maruo, T., & Murakami, F. (2005). Identification of a cis-acting element required for dendritic targeting of activity-regulated cytoskeleton-associated protein mRNA. European Journal of Neuroscience, 12, 2977–2984.

    Google Scholar 

  • Krichevsky, A. M., & Kosik, K. S. (2001). Neuronal RNA granules: A link between RNA localization and stimulation-dependent translation. Neuron, 4, 683–696.

    Google Scholar 

  • Lin, D., Pestova, T. V., Hellen, C. U., & Tiedge, H. (2008). Translational control by a small RNA: Dendritic BC1 RNA targets the eukaryotic initiation factor 4A helicase mechanism. Molecular and Cellular Biology, 9, 3008–3019.

    Google Scholar 

  • Link, W., Konietzko, U., Kauselmann, G., Krug, M., Schwanke, B., Frey, U., & Kuhl, D. (1995). Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proceedings of the National Academy of Sciences of the United States of America, 12, 5734–5738.

    Google Scholar 

  • Lyford, G. L., Yamagata, K., Kaufmann, W. E., Barnes, C. A., Sanders, L. K., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Lanahan, A. A., & Worley, P. F. (1995). Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron, 2, 433–445.

    Google Scholar 

  • Miller, S., Yasuda, M., Coats, J. K., Jones, Y., Martone, M. E., & Mayford, M. (2002). Disruption of dendritic translation of CaMKIIalpha impairs stabilization of synaptic plasticity and memory consolidation. Neuron, 3, 507–519.

    Google Scholar 

  • Monshausen, M., Putz, U., Rehbein, M., Schweizer, M., DesGroseillers, L., Kuhl, D., Richter, D., & Kindler, S. (2001). Two rat brain Staufen isoforms differentially bind RNA. Journal of Neurochemistry, 1, 155–165.

    Google Scholar 

  • Mori, Y., Imaizumi, K., Katayama, T., Yoneda, T., & Tohyama, M. (2000). Two cis-acting elements in the 3′ untranslated region of alpha-CaMKII regulate its dendritic targeting. Nature Neuroscience, 11, 1079–1084.

    Google Scholar 

  • Nairn, A. C., Matsushita, M., Nastiuk, K., Horiuchi, A., Mitsui, K., Shimizu, Y., & Palfrey, H. C. (2001). Elongation factor-2 phosphorylation and the regulation of protein synthesis by calcium. Progress in Molecular and Subcellular Biology, 27, 91–129.

    PubMed  CAS  Google Scholar 

  • Naisbitt, S., Kim, E., Tu, J. C., Xiao, B., Sala, C., Valtschanoff, J., Weinberg, R. J., Worley, P. F., & Sheng, M. (1999). Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron, 3, 569–582.

    Google Scholar 

  • Napoli, I., Mercaldo, V., Boyl, P. P., Eleuteri, B., Zalfa, F., De Rubeis, S., Di Marino, D., Mohr, E., Massimi, M., Falconi, M., Witke, W., Costa-Mattioli, M., Sonenberg, N., Achsel, T., & Bagni, C. (2008). The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell, 6, 1042–1054.

    Google Scholar 

  • Narayanan, U., Nalavadi, V., Nakamoto, M., Thomas, G., Ceman, S., Bassell, G. J., & Warren, S. T. (2008). S6K1 phosphorylates and regulates fragile X mental retardation protein (FMRP) with the neuronal protein synthesis-dependent mammalian target of rapamycin (mTOR) signaling cascade. Journal of Biological Chemistry, 27, 18478–18482.

    Google Scholar 

  • Ostroff, L. E., Cain, C. K., Bedont, J., Monfils, M. H., & Ledoux, J. E. (2010). Fear and safety learning differentially affect synapse size and dendritic translation in the lateral amygdala. Proceedings of the National Academy of Sciences of the United States of America, 20, 9418–9423.

    Google Scholar 

  • Ouyang, Y., Rosenstein, A., Kreiman, G., Schuman, E. M., & Kennedy, M. B. (1999). Tetanic stimulation leads to increased accumulation of Ca(2+)/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons. The Journal of Neuroscience, 18, 7823–7833.

    Google Scholar 

  • Park, S., Park, J. M., Kim, S., Kim, J. A., Shepherd, J. D., Smith-Hicks, C. L., Chowdhury, S., Kaufmann, W., Kuhl, D., Ryazanov, A. G., Huganir, R. L., Linden, D. J., & Worley, P. F. (2008). Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron, 1, 70–83.

    Google Scholar 

  • Parsons, R. G., Gafford, G. M., & Helmstetter, F. J. (2006). Translational control via the mammalian target of rapamycin pathway is critical for the formation and stability of long-term fear memory in amygdala neurons. The Journal of Neuroscience, 50, 12977–12983.

    Google Scholar 

  • Pfeiffer, B. E., & Huber, K. M. (2006). Current advances in local protein synthesis and synaptic plasticity. The Journal of Neuroscience, 27, 7147–7150.

    Google Scholar 

  • Pinkstaff, J. K., Chappell, S. A., Mauro, V. P., Edelman, G. M., & Krushel, L. A. (2001). Internal initiation of translation of five dendritically localized neuronal mRNAs. Proceedings of the National Academy of Sciences of the United States of America, 5, 2770–2775.

    Google Scholar 

  • Plath, N., Ohana, O., Dammermann, B., Errington, M. L., Schmitz, D., Gross, C., Mao, X., Engelsberg, A., Mahlke, C., Welzl, H., Kobalz, U., Stawrakakis, A., Fernandez, E., Waltereit, R., Bick-Sander, A., Therstappen, E., Cooke, S. F., Blanquet, V., Wurst, W., Salmen, B., Bosl, M. R., Lipp, H. P., Grant, S. G., Bliss, T. V., Wolfer, D. P., & Kuhl, D. (2006). Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron, 3, 437–444.

    Google Scholar 

  • Pyronnet, S., Imataka, H., Gingras, A. C., Fukunaga, R., Hunter, T., & Sonenberg, N. (1999). Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. The EMBO Journal, 1, 270–279.

    Google Scholar 

  • Raab-Graham, K. F., Haddick, P. C., Jan, Y. N., & Jan, L. Y. (2006). Activity- and mTOR-dependent suppression of Kv1.1 channel mRNA translation in dendrites. Science, 5796, 144–148.

    Google Scholar 

  • Rehbein, M., Wege, K., Buck, F., Schweizer, M., Richter, D., & Kindler, S. (2002). Molecular characterization of MARTA1, a protein interacting with the dendritic targeting element of MAP2 mRNAs. Journal of Neurochemistry, 5, 1039–1046.

    Google Scholar 

  • Romorini, S., Piccoli, G., Jiang, M., Grossano, P., Tonna, N., Passafaro, M., Zhang, M., & Sala, C. (2004). A functional role of postsynaptic density-95-guanylate kinase-associated protein complex in regulating Shank assembly and stability to synapses. The Journal of Neuroscience, 42, 9391–9404.

    Google Scholar 

  • Sala, C., Piech, V., Wilson, N. R., Passafaro, M., Liu, G., & Sheng, M. (2001). Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron, 1, 115–130.

    Google Scholar 

  • Scheetz, A. J., Nairn, A. C., & Constantine-Paton, M. (2000). NMDA receptor-mediated control of protein synthesis at developing synapses. Nature Neuroscience, 3, 211–216.

    PubMed  CAS  Google Scholar 

  • Schratt, G. (2009). microRNAs at the synapse. Nature Reviews Neuroscience, 12, 842–849.

    Google Scholar 

  • Schratt, G. M., Nigh, E. A., Chen, W. G., Hu, L., & Greenberg, M. E. (2004). BDNF regulates the translation of a select group of mRNAs by a mammalian target of rapamycin-phosphatidylinositol 3-kinase-dependent pathway during neuronal development. The Journal of Neuroscience, 33, 7366–7377.

    Google Scholar 

  • Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., & Greenberg, M. E. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 7074, 283–289.

    Google Scholar 

  • Schütt, J., Falley, K., Richter, D., Kreienkamp, H. J., & Kindler, S. (2009). Fragile X mental retardation protein regulates the levels of scaffold proteins and glutamate receptors in postsynaptic densities. Journal of Biological Chemistry, 38, 25479–25487.

    Google Scholar 

  • Shin, C. Y., Kundel, M., & Wells, D. G. (2004). Rapid, activity-induced increase in tissue plasminogen activator is mediated by metabotropic glutamate receptor-dependent mRNA translation. The Journal of Neuroscience, 42, 9425–9433.

    Google Scholar 

  • Slezak-Prochazka, I., Durmus, S., Kroesen, B. J., & van den Berg, A. (2010). MicroRNAs, macrocontrol: Regulation of miRNA processing. RNA, 6, 1087–1095.

    Google Scholar 

  • Slipczuk, L., Bekinschtein, P., Katche, C., Cammarota, M., Izquierdo, I., & Medina, J. H. (2009). BDNF activates mTOR to regulate GluR1 expression required for memory formation. PloS One, 6, e6007.

    Google Scholar 

  • Sonenberg, N., & Hinnebusch, A. G. (2009). Regulation of translation initiation in eukaryotes: Mechanisms and biological targets. Cell, 4, 731–745.

    Google Scholar 

  • Steward, O. (2002). mRNA at synapses, synaptic plasticity, and memory consolidation. Neuron, 3, 338–340.

    Google Scholar 

  • Steward, O., & Levy, W. B. (1982). Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. The Journal of Neuroscience, 3, 284–291.

    Google Scholar 

  • Steward, O., & Worley, P. F. (2001). Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron, 1, 227–240.

    Google Scholar 

  • Sutton, M. A., & Schuman, E. M. (2006). Dendritic protein synthesis, synaptic plasticity, and memory. Cell, 1, 49–58.

    Google Scholar 

  • Takei, N., Inamura, N., Kawamura, M., Namba, H., Hara, K., Yonezawa, K., & Nawa, H. (2004). Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. The Journal of Neuroscience, 44, 9760–9769.

    Google Scholar 

  • Takei, N., Kawamura, M., Hara, K., Yonezawa, K., & Nawa, H. (2001). Brain-derived neurotrophic factor enhances neuronal translation by activating multiple initiation processes: Comparison with the effects of insulin. Journal of Biological Chemistry, 46, 42818–42825.

    Google Scholar 

  • Takeuchi, M., Hata, Y., Hirao, K., Toyoda, A., Irie, M., & Takai, Y. (1997). SAPAPs: A family of PSD-95/SAP90-associated proteins localized at postsynaptic density. Journal of Biological Chemistry, 18, 11943–11951.

    Google Scholar 

  • Tang, S. J., Meulemans, D., Vazquez, L., Colaco, N., & Schuman, E. (2001). A role for a rat homolog of staufen in the transport of RNA to neuronal dendrites. Neuron, 3, 463–475.

    Google Scholar 

  • Tang, S. J., Reis, G., Kang, H., Gingras, A. C., Sonenberg, N., & Schuman, E. M. (2002). A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 1, 467–472.

    Google Scholar 

  • Tcherkezian, J., Brittis, P. A., Thomas, F., Roux, P. P., & Flanagan, J. G. (2010). Transmembrane receptor DCC associates with protein synthesis machinery and regulates translation. Cell, 4, 632–644.

    Google Scholar 

  • Tiruchinapalli, D. M., Oleynikov, Y., Kelic, S., Shenoy, S. M., Hartley, A., Stanton, P. K., Singer, R. H., & Bassell, G. J. (2003). Activity-dependent trafficking and dynamic localization of zipcode binding protein 1 and beta-actin mRNA in dendrites and spines of hippocampal neurons. The Journal of Neuroscience, 8, 3251–3261.

    Google Scholar 

  • Tsokas, P., Ma, T., Iyengar, R., Landau, E. M., & Blitzer, R. D. (2007). Mitogen-activated protein kinase upregulates the dendritic translation machinery in long-term potentiation by controlling the mammalian target of rapamycin pathway. The Journal of Neuroscience, 22, 5885–5894.

    Google Scholar 

  • Tübing, F., Vendra, G., Mikl, M., Macchi, P., Thomas, S., & Kiebler, M. A. (2010). Dendritically localized transcripts are sorted into distinct ribonucleoprotein particles that display fast directional motility along dendrites of hippocampal neurons. The Journal of Neuroscience, 11, 4160–4170.

    Google Scholar 

  • Valtschanoff, J. G., & Weinberg, R. J. (2001). Laminar organization of the NMDA receptor complex within the postsynaptic density. The Journal of Neuroscience, 4, 1211–1217.

    Google Scholar 

  • Verpelli, C., Piccoli, G., Zanchi, A., Gardoni, F., Huang, K., Brambilla, D., Di Luca, M., Battaglioli, E., & Sala, C. (2010). Synaptic activity controls dendritic spine morphology by modulating eEF2-dependent BDNF synthesis. The Journal of Neuroscience, 17, 5830–5842.

    Google Scholar 

  • Wang, H., Iacoangeli, A., Lin, D., Williams, K., Denman, R. B., Hellen, C. U., & Tiedge, H. (2005). Dendritic BC1 RNA in translational control mechanisms. The Journal of Cell Biology, 5, 811–821.

    Google Scholar 

  • Wang, H., Iacoangeli, A., Popp, S., Muslimov, I. A., Imataka, H., Sonenberg, N., Lomakin, I. B., & Tiedge, H. (2002). Dendritic BC1 RNA: Functional role in regulation of translation initiation. The Journal of Neuroscience, 23, 10232–10241.

    Google Scholar 

  • Wang, H., Kim, S. S., & Zhuo, M. (2010). Roles of fragile X mental retardation protein in dopaminergic stimulation-induced synapse-associated protein synthesis and subsequent alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) receptor internalization. Journal of Biological Chemistry, 28, 21888–21901.

    Google Scholar 

  • Waskiewicz, A. J., Johnson, J. C., Penn, B., Mahalingam, M., Kimball, S. R., & Cooper, J. A. (1999). Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Molecular and Cellular Biology, 3, 1871–1880.

    Google Scholar 

  • Waung, M. W., Pfeiffer, B. E., Nosyreva, E. D., Ronesi, J. A., & Huber, K. M. (2008). Rapid translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate. Neuron, 1, 84–97.

    Google Scholar 

  • Welch, J. M., Lu, J., Rodriguiz, R. M., Trotta, N. C., Peca, J., Ding, J. D., Feliciano, C., Chen, M., Adams, J. P., Luo, J., Dudek, S. M., Weinberg, R. J., Calakos, N., Wetsel, W. C., & Feng, G. (2007). Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature, 7156, 894–900.

    Google Scholar 

  • Welch, J. M., Wang, D., & Feng, G. (2004). Differential mRNA expression and protein localization of the SAP90/PSD-95-associated proteins (SAPAPs) in the nervous system of the mouse. The Journal of Comparative Neurology, 1, 24–39.

    Google Scholar 

  • Wells, D. G. (2006). RNA-binding proteins: A lesson in repression. The Journal of Neuroscience, 27, 7135–7138.

    Google Scholar 

  • Wells, D. G., Dong, X., Quinlan, E. M., Huang, Y. S., Bear, M. F., Richter, J. D., & Fallon, J. R. (2001). A role for the cytoplasmic polyadenylation element in NMDA receptor-regulated mRNA translation in neurons. The Journal of Neuroscience, 24, 9541–9548.

    Google Scholar 

  • Wu, L., Wells, D., Tay, J., Mendis, D., Abbott, M. A., Barnitt, A., Quinlan, E., Heynen, A., Fallon, J. R., & Richter, J. D. (1998). CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses. Neuron, 5, 1129–1139.

    Google Scholar 

  • Zalfa, F., Giorgi, M., Primerano, B., Moro, A., Di Penta, A., Reis, S., Oostra, B., & Bagni, C. (2003). The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell, 3, 317–327.

    Google Scholar 

  • Zhong, J., Chuang, S. C., Bianchi, R., Zhao, W., Lee, H., Fenton, A. A., Wong, R. K., & Tiedge, H. (2009). BC1 regulation of metabotropic glutamate receptor-mediated neuronal excitability. The Journal of Neuroscience, 32, 9977–9986.

    Google Scholar 

  • Zhong, J., Zhang, T., & Bloch, L. M. (2006). Dendritic mRNAs encode diversified functionalities in hippocampal pyramidal neurons. BMC Neuroscience, 7, 17.

    PubMed  Google Scholar 

  • Zitzer, H., Hönck, H. H., Bächner, D., Richter, D., & Kreienkamp, H. J. (1999). Somatostatin receptor interacting protein defines a novel family of multidomain proteins present in human and rodent brain. Journal of Biological Chemistry, 46, 32997–33001.

    Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratories is supported by grants from FRAXA, Deutsche Forschungsgemeinschaft and Fritz-Thyssen-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kindler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/WIen

About this chapter

Cite this chapter

Kindler, S., Kreienkamp, HJ. (2012). Dendritic mRNA Targeting and Translation. In: Kreutz, M., Sala, C. (eds) Synaptic Plasticity. Advances in Experimental Medicine and Biology, vol 970. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0932-8_13

Download citation

Publish with us

Policies and ethics