Skip to main content

Part of the book series: Topics in Current Physics ((TCPHY,volume 22))

Abstract

The title of this chapter may seem obscure to many physicists. What we intend to deal with consists of several curious phenomena, well known to experimentalists, or recently discovered. They are grating anomalies, usually referred to as Wood anomalies, total absorption of a plane wave by a metallic grating (bare or coated with a thin dielectric layer) as well as the coupling of a laser beam into an optical waveguide by means of a holographic thin film coupler. Despite their different appearances, all these phenomena have the same origin in common. They all are connected with the excitation of surface waves along the periodic structure. Such a surface wave carries energy parallel to the mean plane of the surface, but is also slightly attenuated in that direction. Thus, it is referred to by many authors as a “leaky wave”. From a mathematical point of view, it is a solution of Maxwell equations and the associated boundary conditions on the grating surface, without any wave impinging on the structure. It is the study of such a solution that we call the “homogeneous problem” and we wish to show how the resolution of the homogeneous problem can enlighten the study of the response of the structure to a given excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.W. Wood: Philos. Mag. 4, 396 (1902)

    Google Scholar 

  2. J.W.S. Rayleigh: Philos. Mag. 14, 60 (1907)

    Google Scholar 

  3. J.W.S. Rayleigh: Proc. Roy. Soc. A 79, 399 (1907)

    ADS  Google Scholar 

  4. R.W. Wood: Phys. Rev. 48, 928 (1935)

    Article  ADS  Google Scholar 

  5. L.R. Ingersoll: Phys. Rev. 17., 928 (1921)

    Google Scholar 

  6. J. Strong: Phys. Rev. 49, 291 (1936)

    Article  ADS  Google Scholar 

  7. C.H. Palmer Jr.: J. Opt. Soc. Am. 41, 269 (1952); 46, 50 (1956)

    Article  ADS  Google Scholar 

  8. J.E. Stewart, W.S. Gallaway: Appl. Opt. 1, 421 (1962)

    Article  ADS  Google Scholar 

  9. J. Hagglund, F. Sellberg: J. Opt. Soc. Am. 56, 1031 (1966)

    Article  ADS  Google Scholar 

  10. J.J. Cowan, E.T. Arakawa: Z. Phys. 97, 235 (1970)

    Google Scholar 

  11. M.C. Hutley: Opt. Acta 20, 607 (1973)

    Article  Google Scholar 

  12. M.C. Hutley, V.M. Bird: Opt. Acta 20 771 (1973)

    Article  Google Scholar 

  13. M.C. Hutley, J.F. Verrill, R.C. McPhedran:: Opt. Commun. 11, 207 (1974)

    Article  ADS  Google Scholar 

  14. U. Fano: J. Opt. Soc. Am. 31, 213 (1941)

    Article  ADS  Google Scholar 

  15. A. Hessel, A.A. Oliner: Appl. Opt. 4, 1275 (1965)

    Article  ADS  Google Scholar 

  16. A. Wirgin, R. Deleuil: J. Opt. Soc. Am. 59., 1348 (1969)

    Article  ADS  Google Scholar 

  17. M. Nevière, M. Cadilhac, R. Petit: Opt. Commun. 6 34 (1972)

    Article  ADS  Google Scholar 

  18. J.J. Cowan, E.T. Arakawa, L.R. Painter: Appl. Opt. 8,. 1734 (1969)

    Article  ADS  Google Scholar 

  19. R.H. Ritchie, E.T. Arakawa, J.J. Cowan, R.N. Hamm: Phys. Rev. Lett. 22, 1530 (1968)

    Article  ADS  Google Scholar 

  20. R.C. McPhedran, D. Maystre: Nouv. Rev. Opt. 5., 241 (1974)

    Article  Google Scholar 

  21. R.C. McPhedran, D. Maystre: J. Spectrosc. Soc. Jpn. 23, suppl. 1, 13 (1974)

    Google Scholar 

  22. E.G. Loewen, D. Maystre, R.C. McPhedran, I. Wilson: Jpn. J. Appl. Phys. 14, suppl. 14-1, 143 (1975)

    Google Scholar 

  23. M. Nevière, P. Vincent, R. Petit: Nouv. Rev. Opt. 5, 65 (1974)

    Article  Google Scholar 

  24. M.C. Hutley, J.P. Verrill, R.C. McPhedran, M. Mevière, P. Vincent: Nouv. Rev. Opt. 6, 87 (1975)

    Article  Google Scholar 

  25. D. Maystre, R. Petit: Opt. Commun. 17, 196, (1976)

    Article  ADS  Google Scholar 

  26. D. Maystre, M. Nevière: J. Opt. (Paris) 8, 165 (1977)

    ADS  Google Scholar 

  27. M.C. Hutley, D. Maystre: Opt. Commun. 19, 431 (1976)

    Article  ADS  Google Scholar 

  28. M. Nevière, D. Maystre, P. Vincent: J. Opt. (Paris) 8., 231 (1977)

    ADS  Google Scholar 

  29. E.G. Loewen, M. Nevière: Appl. Opt. 16, 3009 (1977)

    Article  ADS  Google Scholar 

  30. D. Maystre, M. Nevière, P. Vincent: Opt. Acta 25, 905 (1978)

    Article  ADS  Google Scholar 

  31. H.L. Bertoni, T. Tamir: Appl. Phys. 2, 157 (1973)

    Article  ADS  Google Scholar 

  32. M. Nevière, R. Petit, M. Cadilhac: Opt. Commun. 8., 113 (1973)

    Article  ADS  Google Scholar 

  33. M. Nevière, P. Vincent, R. Petit, M. Cadilhac: Opt. Commun. 9, 48 (1973)

    Article  ADS  Google Scholar 

  34. M. Nevière, P. Vincent, R. Petit, M. Cadilhac: Opt. Commun. 9, 240 (1973)

    Article  ADS  Google Scholar 

  35. A. Saad, H.L. Bertoni, T. Tamir: Proc. IEEE 62, 1552 (1974)

    Article  Google Scholar 

  36. T. Tamir: Nouv. Rev. Opt. 6, 273 (1975)

    Article  Google Scholar 

  37. T. Tamir, H.L. Bertoni: J. Opt. Soc. Am. 61, 1397 (1971)

    Article  ADS  Google Scholar 

  38. T. Tamir, S.T. Peng: Appl. Phys. 14, 235 (1977)

    Article  ADS  Google Scholar 

  39. V. Shad, T. Tamir: Opt. Commun. 23, 113 (1977)

    Article  ADS  Google Scholar 

  40. H. Raether: Excitation of Plasmons and Interband Transitions by Electrons, Springer Tracts in Modem Physics, Vol. 88 (Springer, Berlin, Heidelberg, New York 1980)

    Google Scholar 

  41. J.M. Elson: Appl. Opt. 16, 2873 (1977)

    Article  ADS  Google Scholar 

  42. J.P. Laude, D. Maystre: To be published

    Google Scholar 

  43. J.J. Cowan, E.T. Arakawa: Z. Phys. 237, 97 (1970)

    ADS  Google Scholar 

  44. A. Otto, W. Sohler: Opt. Commun. 3, 254 (1971)

    Article  ADS  Google Scholar 

  45. J.A. Arnaud: “Piecewise Homogeneous Media”, in Beam and Fiber Optics (Academic Press, New York 1976)

    Google Scholar 

  46. G. Goubau: J. Appl. Phys. 21, 1119 (1950)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. D. Maystre, R.C. McPhedran: Opt. Commun. 12, 164 (1974)

    Article  ADS  Google Scholar 

  48. R. Ulrich: J. Opt. Soc. Am. 60, 1337 (1970)

    Article  ADS  Google Scholar 

  49. P. Vincent: Thesis, Université d’Aix-Marseille III, France (1978)

    Google Scholar 

  50. D. Marcuse: Integrated Optics (IEEE Press, New York 1973)

    Google Scholar 

  51. M.K. Barnowski: Introduction to Integrated Optics (Plenum Press, New York 1974)

    Google Scholar 

  52. T. Tamir (ed.): Integrated Optics, 2nd ed,., Topics in Applied Physics, Vol. 7 (Springer, Berlin, Heidelberg, New York 1979)

    Google Scholar 

  53. J.R. Andrewartha, J.R. Fox, I.J. Wilson: Further properties of lamellar grating resonance anomalies. Opt. Acta 26, 197–209 (1979)

    Article  ADS  Google Scholar 

  54. Ricardo Depine, Juan M. Simon and M.C. Simon: Diffraction grating anomalies: an experimental study of phase shifts and resonances. Opt. Acta 25, 895–904 (1978)

    Article  ADS  Google Scholar 

  55. R. Ulrich, R. Zengerle: Optical bloch waves in periodic planar waveguides. Digest of papers presented at the Topical meeting on Integrated and Guided-wave Optics, Incline Village (January 1980)

    Google Scholar 

  56. Y. Handa, T. Suhara, H. Nishihara, J. Koyama: Scanning electron microscope—written gratings in chalcogenide films for optical integrated curcuits. Appl. Opt. 18, 248 (1979)

    Article  ADS  Google Scholar 

  57. K.C. Chang, T. Tamir: Simplified approach to surface-wave scattering by blazed dielectric gratings. Appl. Opt. 19, 282 (1980)

    Article  ADS  Google Scholar 

  58. K. Utagawa: Theory of diffraction efficiency and anomalies of shallow metal gratings of finite conductivity. J. Opt. Soc. Am. 69, 333 (1979)

    Article  ADS  Google Scholar 

  59. K.C. Chang, U. Shah, T. Tamir: Scattering and guiding of waves by dielectric grating with arbitrary profiles. J. Opt. Soc. Am. 70, 804 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  60. K.C. Chang, V. Shah, T. Tamir: Directional scattering by blazed dielectric gratings. Proceedings of the International U.R.S.I. Symposium, Munich (August 1980)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nevière, M. (1980). The Homogeneous Problem. In: Petit, R. (eds) Electromagnetic Theory of Gratings. Topics in Current Physics, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-81500-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-81500-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-81502-7

  • Online ISBN: 978-3-642-81500-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics