Skip to main content

Part of the book series: Current Topics in 199/I Microbiology and Immunology ((CT MICROBIOLOGY,volume 199/1))

Abstract

Mammals have innate and adaptive defenses that protect them from virus infections. Viruses, in particular the large DNA viruses (adenoviruses, herpesviruses, poxviruses), have evolved mechanisms that counteract the host’s antiviral defenses. In general, these viruses prevent killing of infected cells by cytotoxic T lymphocytes (CTL), block the inflammatory response, inhibit complement fixation, prevent shut-off of cellular protein synthesis in response to interferon, and block apoptosis (which may be a host defense against virus infection). Reviews have appeared recently on how some of these proteins function (Gooding 1992; G.L. Smith 1994). Here we will focus on the human adenoviruses, in particular the E3 transcription unit, which appears to be, at least in part, a cassette of genes that functions to counteract the host’s antiviral defenses. Recent reviews on this topic are by Pääbo et al. (1989), Wold and Gooding (1989, 1991), Gooding and Wold (1990), Gooding (1992), and Wold (1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham SE, Lobo S, Yaciuk P, Wang H-GHW, Moran E (1993) p300, and p300-associated proteins, are components of TATA-binding protein (TBP) complexes. Oncogene 8: 1639–1647

    CAS  PubMed  Google Scholar 

  • Ames RS, Holskin B, Mitcho M, Shalloway D, Chen M-J (1990) Induction of sensitivity to the cytotoxic action of tumor necrosis factor alpha by adenovirus E1A is independent of transformation and transcriptional activation. J Virol 64: 4115–4122

    CAS  PubMed  Google Scholar 

  • Andersson M, Pääbo S, Nilsson T, Peterson PA (1985) Impaired intracellular transport of class I MHC antigens as a possible means for adenoviruses to evade immune surveillance, Cell 43: 215–222

    CAS  PubMed  Google Scholar 

  • Andersson M, McMichael A, Peterson PA (1987) Reduced allorecognition of adenovirus-2 infected cells. J Immunol 138: 3960–3966

    CAS  PubMed  Google Scholar 

  • Baker CC, Ziff EB (1981) Promoters and heterogeneous 5’ termini of the messenger RNAs of adenovirus serotype 2. J Mol Biol 149: 189–221

    CAS  PubMed  Google Scholar 

  • Beg AA, Finco TS, Nantermet PV, Baldwin AS (1993) Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of Iκβα: a mechanism for NF-κβ activation. Mol Cell Biol 13: 3301–3310

    CAS  PubMed  Google Scholar 

  • Beier DC, Cox JH, Vining DR, Cresswell P, Engelhard VH (1994) Association of human class I MHC alleles with the adenovirus E3/19K protein. J Immunol 152: 3862–3872

    CAS  PubMed  Google Scholar 

  • Berk AJ, Sharp PA (1978) Structure of the adenovirus 2 early mRNAs. Cell 14: 695–711

    CAS  PubMed  Google Scholar 

  • Berk AJ, Lee F, Harrison T, Williams J, Sharp P (1979) Pre-early adenovirus 5 gene product regulates synthesis of early viral messenger RNAs. Cell 17: 935–944

    CAS  PubMed  Google Scholar 

  • Bernards R, Schrier PI, Houweling A, Bos JL, van der Eb AJ, Zijlstra M, Melief CJM (1983) Tumorigenicity of cells transformed by adenovirus type 12 by evasion of T-cell immunity. Nature 305: 776–779

    CAS  PubMed  Google Scholar 

  • Beutler B, van Huffel C (1994) Unraveling function in the TNF ligand and receptor families. Science 264: 667–668

    CAS  PubMed  Google Scholar 

  • Bhat BM, Wold WSM (1985) ATTAAA as well as downstream sequences are required for RNA 3’-end formation in the E3 complex transcription unit of adenovirus. Mol Cell Biol 5: 3183–3193

    CAS  PubMed  Google Scholar 

  • Bhat BM, Wold WSM (1986a) Genetic analysis of mRNA synthesis in region E3 of adenovirus at different stages of infection by RNA processing mutants. J Virol 60: 54–63

    CAS  PubMed  Google Scholar 

  • Bhat BM, Wold WSM (1986b) Adenovirus mutants with splice-enhancing mutations in the E3 complex transcription unit are also defective in E3A RNA 3’-end formation. J Virol 57: 1155–1158

    CAS  PubMed  Google Scholar 

  • Bhat BM, Wold WSM (1987) A small deletion distant from a splice or polyadenylation site dramatically alters pre-mRNA processing in region E3 of adenovirus. J Virol 61: 3938–3945

    CAS  PubMed  Google Scholar 

  • Bhat BM, Brady HA, Pursley MH, Wold WSM (1986) Deletion mutants that alter differential RNA processing in the E3 complex transcription unit of adenovirus. J Mol Biol 190: 543–557

    CAS  PubMed  Google Scholar 

  • Binger MH, Flint SJ (1984) Accumulation of early and intermediate mRNA species during subgroup C adenovirus productive infections. Virology 136: 387–403

    CAS  PubMed  Google Scholar 

  • Brady HA, Wold WSM (1987) Identification of a novel sequence that governs both polyadenylation and alternative splicing in region E3 of adenovirus. Nucleic Acids Res. 15: 9397–9416

    CAS  PubMed  Google Scholar 

  • Brady HA, Wold WSM (1988) Competition between splicing and polyadenylation reactions determines which adenovirus region E3 mRNAs are synthesized. Mol Cell Biol 8: 3291–3297

    CAS  PubMed  Google Scholar 

  • Brady HA, Scaria A, Wold WSM (1992) Map of cis-acting sequences that determine alternative pre-mRNA processing in the E3 complex transcription unit of adenovirus. J Virol 66: 5914–5923

    CAS  PubMed  Google Scholar 

  • Brandt CD, Kim HW, Vargosko AJ, Jeffries BC, Arrobio JO, Rindge B, Parrott RH, Chanock RM (1969) Infections in 18,000 infants and children in a controlled study of respiratory tract disease. I. Adenovirus pathogenicity in relation to serologic type and illness syndrome. Am J Epidemiol 90: 484–500

    CAS  PubMed  Google Scholar 

  • Buckbinder L, Miralles VJ, Reinberg D (1989) TPA can overcome the requirement for E1a and together act synergistically in stimulating expression of the adenovirus E3 promoter. EMBO J 8: 4239–4250

    CAS  PubMed  Google Scholar 

  • Burgert H-G, Kvist S (1985) An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell 41: 987–997

    CAS  PubMed  Google Scholar 

  • Burgert H-G, Kvist S (1987) The E3/19K protein of adenovirus type 2 binds to the domains of histocompatibility antigens required for CTL recognition. EMBO J 6: 2019–2026

    CAS  PubMed  Google Scholar 

  • Burgert H-G, Maryanski JL, Kvist S (1987) “E3/19K” protein of adenovirus type 2 inhibits lysis of cytolytic T lymphocytes by blocking cell-surface expression of histocompatibility class I antigens. Proc Natl Acad Sci USA 84: 1356–1360

    CAS  PubMed  Google Scholar 

  • Carlin CR, Tollefson AE, Brady HA, Hoffman BL, Wold WSM (1989) Epidermal growth factor receptor is down-regulated by a 10,400 MW protein encoded bythe E3 region of adenovirus. Cell 57:135–144

    CAS  PubMed  Google Scholar 

  • Chang DJ, Ringold GM, Heller RA (1992) Cell killing and induction of manganous superoxide dismutase by tumor necrosis factor-α is mediated by lipoxygenase metabolites of arachidonic acid. Biochem Biophys Res Commun 188: 538–546

    CAS  PubMed  Google Scholar 

  • Chen M-J, Holskin B, Strickler J, Gorniak J, Clark MA, Johnson PJ, Mitcho M, Shalloway D (1987) Induction by E/A oncogene expression of cellular susceptibility to lysis by TNF. Nature 330: 581–583

    CAS  PubMed  Google Scholar 

  • Chow LT, Broker TR (1978) The spliced structures of adenovirus 2 fiber message and the other late mRNAs. Cell 15: 497–510

    CAS  PubMed  Google Scholar 

  • Chow LT, Roberts JM, Lewis JB, Broker TR (1977) A map of cytoplasmic RNA transcripts from lytic adenovirus type 2, determined by electron microscopy of RNA:DNA hybrids. Cell 11: 819–836

    CAS  PubMed  Google Scholar 

  • Chow LT, Lewis JB, Borker TR (1979a) RNA transcription and splicing at early and intermediate times after adenovirus-2 infection. Cold Spring Harbor Symp Quant Biol 44: 401–414

    Google Scholar 

  • Chow LT, Broker TR, Lewis JB (1979b) Complex splicing patterns of RNAs from the early regions of adenovirus-2. J Mol Biol 134: 265–303

    CAS  PubMed  Google Scholar 

  • Cladaras C, Wold WSM (1985) DNA sequence of the early E3 transcription unit of adenovirus 5. Virology 140: 28–43

    CAS  PubMed  Google Scholar 

  • Cladaras C, Bhat BM, Wold WSM (1985) Mapping the 5’ends, 3’ ends, and splice sites of mRNAs from the E3 transcription unit of adenovirus 5. Virology 140: 44–54

    CAS  PubMed  Google Scholar 

  • Clark JD, Lin L-L, Kriz RW, Ramesha CS, Sultzman LA, Lin AY, Milona N, Knopf JL (1991) A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP. Cell 65: 1043–1051

    CAS  PubMed  Google Scholar 

  • Cousin C, Winter N, Gomes SA, D’Halluin JC (1991) Cellular transformation of E1 genes of enteric adenoviruses. Virology 181: 277–287

    CAS  PubMed  Google Scholar 

  • Cox JH, Yewdell JW, Eisenlohr LC, Johnson PR, Bennink JR (1990) Antigen presentation requires transport of MHC class I molecules from the endoplasmic reticulum. Science 247: 715–718

    CAS  PubMed  Google Scholar 

  • Cox JH, Bennink JR, Yewdell JW (1991) Retention of adenovirus E19 glycoprotein in the endoplasmic reticulum is essential to its ability to block antigen presentation. J Exp Med 174: 1629–1637

    CAS  PubMed  Google Scholar 

  • Dahllöf B, Wallin M, Kvist S (1991) The endoplasmic reticulum retention signal of the E3/19K protein of adenovirus-2 is microtubule binding. J Biol Chem 266: 1804–1808

    PubMed  Google Scholar 

  • Davison AJ, Telford AR, Watson MS, McBride K, Mautner V (1993) The DNA sequence of adenovirus type 40. J Mol Biol 234: 1308–1316

    CAS  PubMed  Google Scholar 

  • Dbaibo GS, Obeid LM, Hannun YA (1993) Tumor necrosis factor-a (TNF-a) signal transduction through ceramide. J Biol Chem 268: 17762–17766

    CAS  PubMed  Google Scholar 

  • Dérijard B, Hibi M, Wu l-H, Barrett T, Su B, Deng T, Karin M, Davis RJ (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76: 1025–1037

    PubMed  Google Scholar 

  • Deutscher SL, Bhat BM, Pursley MH, Cladaras C, Wold WSM (1985) Novel deletion mutants that enhance a distant upstream 5’ splice in the E3 transcription unit of adenovirus 2. Nucleic Acids Res 13: 5771–5788

    CAS  PubMed  Google Scholar 

  • Dobrowsky RT, Kamibayashi C, Mumby MC, Hannun YA (1993) Ceramide activates heterotrimeric protein phosphatase2A. J Biol Chem 268: 15523–15530

    CAS  PubMed  Google Scholar 

  • Duerksen-Hughes P, Wold WSM, Gooding LR (1989) Adenovirus E1A renders infected cells sensitive to cytolysis by tumor necrosis factor. J Immunol 143: 4193–4200

    CAS  PubMed  Google Scholar 

  • Duerksen-Hughes PJ, Hermiston TW, Wold WSM, Gooding LR (1991) The amino-terminal portion of CD1 of the adenovirus E1A proteins is required to induce susceptibility to tumor necrosis factor cytolysis in adenovirus-infected mouse cells. J Virol 65: 1236–1244

    CAS  PubMed  Google Scholar 

  • Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Lawrence JB, Livingston DM (1994) Molecular cloning and functional analysis of the adenovirus E1 A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev 8: 869–884

    CAS  PubMed  Google Scholar 

  • Flomenberg PR, Chen M, Horwitz MS (1987) Characterization of a major histocompatibility complex class I antigen-binding glycoprotein from adenovirus type 35, a type associated with immunocompromised hosts. J Virol 61: 3665–3671

    CAS  PubMed  Google Scholar 

  • Flomenberg PR, Chen M, Horwitz MS (1988) Sequence and genetic organization of adenovirus type 35 early region 3. J Virol 62: 4431–4437

    CAS  PubMed  Google Scholar 

  • Flomenberg P, Szmulewicz J, Gutierrez E, Lupatkin H (1992) Role of the adenovirus E3–19K conserved region in binding major histocompatibility complex class I molecules. J Virol 66: 4778–4783

    CAS  PubMed  Google Scholar 

  • Fox JP, Hall CE, Cooney MK (1977) The Seattle virus watch: observations of adenovirus infections. Am J Epidemiol 105: 362–386

    CAS  PubMed  Google Scholar 

  • Friedman DJ, Ricciardi RP (1988) Adenovirus type 12 E1A gene represses accumulation of MHC class I mRNAs at the level of transcription. Virology 165: 303–305

    CAS  PubMed  Google Scholar 

  • Gabathuler R, Levy F, Kvist S (1990) Requirements for the association of adenovirus type 2 E3/19K wild-type and mutant proteins with HLA antigens. J Virol 64: 3679–3685

    CAS  PubMed  Google Scholar 

  • Garcia J, Wu F, Gaynor R (1987) Upstream regulatory regions required to stabilize binding to the TATA sequence in an adenovirus early promoter. Nucleic Acids Res 15: 8367–8385

    CAS  PubMed  Google Scholar 

  • Ginsberg HS, Lundholm-Beauchamp U, Horswood RL, Pernis B, Wold WSM, Chanock RM, Prince GA (1989) Role of early region 3 (E3) in pathogenesis of adenovirus disease. Proc Natl Acad Sci USA 86: 3823–3827

    CAS  PubMed  Google Scholar 

  • Gooding LR (1992) Virus proteins that counteract hose immune defenses. Cell 71: 5–7

    CAS  PubMed  Google Scholar 

  • Gooding LR, Wold WSM (1990) Molecular mechanisms by which adenovirus counteract antiviral immune defenses. CRC Crit Rev Immunol 10: 53–71

    CAS  Google Scholar 

  • Gooding LR, Elmore LW, Tollefson AE, Brady HA, Wold WSM (1988) A14,700 MW protein from the E3 region of adenovirus inhibits cytolysis by tumor necrosis factor. Cell 53: 341–346

    CAS  PubMed  Google Scholar 

  • Gooding LR, Sofola IO, Tollefson AE, Duerksen-Hughes P, Wold WSM (1990) The adenovirus E3–14. 7K protein is a general inhibitor of tumor necrosis factor-mediated cytolysis. J Immunol 145: 3080–3086

    CAS  PubMed  Google Scholar 

  • Gooding LR, Aquino L, Duerksen-Hughes PJ, Day D, Horton TM, Yei S, Wold WSM (1991a) The E1B 19,000-molecular-weight protein of group C adenoviruses prevents tumor necrosis factor cytolysis of human cells but not of mouse cells. J Virol 65: 3083–3094

    CAS  PubMed  Google Scholar 

  • Gooding LR, Ranheim TS, Tollefson AE, Aquino L, Duerksen-Hughes P, Horton TM, Wold WSM (1991 b) The 10,400- and 14,500-dalton proteins encoded by region E3 of adenovirus function together to protect many but not all mouse cell lines against lysis by tumor necrosis factor. J Virol 65: 4114–4123

    CAS  PubMed  Google Scholar 

  • Grunhaus A, Horwitz MS (1992) Adenoviruses as cloning vectors. Semin Virol 3: 237–252

    CAS  Google Scholar 

  • Grunhaus A, Cho S, Horwitz MS (1994) Association of vaccinia virus-expressed adenovirus E3–19K glycoprotein with class I MHC and its effects on virulence in a murine pneumonia model. Virology 200: 535–546

    CAS  PubMed  Google Scholar 

  • Hannun YA (1994) The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 269: 3125–3128

    CAS  PubMed  Google Scholar 

  • Hannun YA, Bell RM (1993) The sphingomyelin cycle: a prototypic sphingolipid signaling pathway. Adv Lipid Res 25: 27–41

    CAS  PubMed  Google Scholar 

  • Hashimoto S, Ishii A, Yonehara S (1991) The E1 b oncogene of adenovirus confers cellular resistance to cytotoxicity of tumor necrosis factor and monoclonal anti-Fas antibody. Int Immunol 3: 343–351

    CAS  PubMed  Google Scholar 

  • Hawkins LK, Wold WSM (1992) A12,500 MW protein is coded by region E3 of adenovirus. Virology 188: 486–494

    CAS  PubMed  Google Scholar 

  • Hawkins LK, Wold WSM (1995) A 20 500-dalton protein is coded by region E3 of subgroup B but not subgroup C human adenoviruses. Virology (in press)

    Google Scholar 

  • Hawkins LK, Wilson-Rawls J, Wold WSM (1995) Region E3 of subgroup B human adenoviruses encodes a 16,000 MW membrane protein that may be a distant analog of the E3–6.7K protein of subgroup C adenoviruses. J Virol (in press)

    Google Scholar 

  • Hayakawa M, Ishida N, Takeuchi K, Shibamoto S, Hori T, Oku N, Ito F, Tsujimoto M (1993) Arachidonic acid-selective cytosolic phospholipase A2 is crucial in the cytotoxic action of tumor necrosis factor. J Biol Chem 268: 11290–11295

    CAS  PubMed  Google Scholar 

  • Hérissé J, Galibert F (1981) Nucleotide sequence of the EcoRI E fragment of adenovirus 2 genome. Nucleic Acids Res 9: 1229–1240

    PubMed  Google Scholar 

  • Hérissé J, Courtois G, Galibert F (1980) Nucleotide sequence of the EcoRI D fragment of adenovirus 2 genome. Nucleic Acids Res 8: 2173–2192

    PubMed  Google Scholar 

  • Hennet T, Ziltener HJ, Frei K, Peterhans E (1992) A kinetic study of immune mediators in the lungs of mice infected with influenza A virus. J Immunol 149: 932–939

    CAS  PubMed  Google Scholar 

  • Hermiston TW, Hellwig R, Hierholzer JC, Wold WSM (1993a) Sequence and functional analysis of the human adenovirus type 7 E3-gp19K protein from 17 clinical isolates. Virology 197: 593–600

    CAS  PubMed  Google Scholar 

  • Hermiston TW, Tripp RA, Sparer T, Gooding LR, Wold WSM (1993b) Deletion mutant analysis of the adenovirus type 2 E3-gp19K protein: identification of sequences within the endoplasmic reticulum lumenal domain that are required for class I antigen binding and protection from adenovirus-specific cytotoxic T lymphocytes. J Virol 67: 5289–5298

    CAS  PubMed  Google Scholar 

  • Hermiston TW, Tollefson AE, Bhat BM, Skdheer S, Davis A, Hung P, Wold WSM. DNA sequence of the E3 transcription unit of human adenovirus type 4 (manuscript in preparation)

    Google Scholar 

  • Hoeck WG, Ramesha CS, Chang DJ, Fan N, Heller RA (1993) Cytoplasmic phospholipase A2 activity and gene expression are stimulated by tumor necrosis factor: dexamethasone blocks the induced synthesis. Proc Natl Acad Sci USA 90: 4475–4479

    CAS  PubMed  Google Scholar 

  • Hoffman P, Yaffe MB, Hoffman BL, Yei SP, Wold WSM, Carlin C (1992) Characterization of the adenovirus E3 protein that down-regulates the epidermal growth factor receptor. J Biol Chem 267: 13480–13487

    CAS  PubMed  Google Scholar 

  • Hong JS, Mullis KG, Engler JA (1988) Characterization of the early region 3 and fiber genes of Ad7. Virology 167: 545–553

    CAS  PubMed  Google Scholar 

  • Horton TM, Tollefson AE, Wold WSM, Gooding LR (1990) A protein serologically and functionally related to the group C E3 14,700-kilodalton protein is found in multiple adenovirus serotypes. J Virol 64: 1250–1255

    CAS  PubMed  Google Scholar 

  • Horton TM, Ranheim TS, Aquino L, Kusher Dl, Saha SK, Ware CF, Wold WSM, Gooding LR (1991) Adenovirus E3 14.7K protein functions in the absence of other adenovirus proteins to protect transfected cells from tumor necrosis factor cytolysis. J Virol 65: 2629–2639

    CAS  PubMed  Google Scholar 

  • Horwitz MS (1990) Adenovirus. In: Fields BN, Knipe DM (eds) Virology, 2nd edn. Raven, New York, pp 1679–1721

    Google Scholar 

  • Hurst HC, Jones NC (1987) Identification of factors that interact with the E1A-inducible adenovirus E3 promoter. Genes Dev 1: 1132–1146

    CAS  PubMed  Google Scholar 

  • Jackson MR, Nilsson T, Peterson PA (1990) Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J 9: 3153–3162

    CAS  PubMed  Google Scholar 

  • Jackson MR, Nifsson T, Peterson PA (1993) Retrieval of transmembrane proteins to the endoplasmic reticulum. J Cell Biol 121: 317–333

    CAS  PubMed  Google Scholar 

  • Jarvis WD, Kolesnick RN, Fornari FA, Traylor RS, Gewirtz DA, Grant S (1994) Induction of apoptotic DNA damage and cell death by activation of the sphingomyelin pathway. Proc Natl Acad Sci USA 91: 73–77

    CAS  PubMed  Google Scholar 

  • Jefferies WA, Burgert H-G (1990) E3/19K from adenovirus 2 is an immunosubversive protein that binds to a structural motif regulating the intracellular transport of major histocompatibility complex class I proteins. J Exp Med 172: 1653–1664

    CAS  PubMed  Google Scholar 

  • Johnson DG, Schwarz JK, Cress WD, Nevins JR (1993) Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365: 349–352

    CAS  PubMed  Google Scholar 

  • Jones N, Shenk T (1979) Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells. Cell 17: 683–689

    CAS  PubMed  Google Scholar 

  • Joseph CK, Byun H-S, Bittman R, Kolesnick RN (1993) Substrate recognition by ceramide-activated protein kinase. J Biol Chem 268: 20002–20006

    CAS  PubMed  Google Scholar 

  • Kämpe O, Beilgrau D, Hammerling U, Lind P, Pääbo S, Severinsson L, Peterson PA (1983) Complex formation of class I transplantation antigens and a viral glycoprotein. J Biol Chem 258:10594–10598

    PubMed  Google Scholar 

  • Kapoor QS, Wold WSM, Chinnadurai G (1981) A non-essential glycoprotein is coded by early region E3 of adenovirus type 7. Virology 112: 780–784

    CAS  PubMed  Google Scholar 

  • Kelly Jr TJ, Lewis Jr AM (1973) Use of nondefective adenovirus-simian virus 40 hybrids for mapping the simian virus 40 genome. J Virol 12: 643–652

    PubMed  Google Scholar 

  • Kitchingman GR, Westphal H (1980) The structure of adenovirus 2 early nuclear and cytoplasmic RNAs. J Mol Biol 137: 23–48

    CAS  PubMed  Google Scholar 

  • Kolesnick R, Golde DW (1994) The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 77: 325–328

    CAS  PubMed  Google Scholar 

  • Körner H, Burgert H-G (1994) Down-regulation of HLA antigens by the adenovirus type 2 E3/19K protein in a T-lymphoma cell line. J Virol 68: 1442–1448

    PubMed  Google Scholar 

  • Körner H, Fritzsche U, Burgert H-G (1992) Tumor necrosis factor a stimulates expression of adenovirus early region 3 proteins: implications for viral persistence. Proc Natl Acad Sci USA 89: 11857–11861

    PubMed  Google Scholar 

  • Kornfeld R, Wold WSM (1981) Structures of the oligosaccharides of the glycoprotein coded by early region E3 of adenovirus 2. J Virol 40: 440–449

    CAS  PubMed  Google Scholar 

  • Kornuc M, Kliewer S, Garcia J, Harrich D, Li C, Gaynor R (1990) Adenovirus early region 3 promoter regulation by E1 A/E1B is independent of alterations in DNA binding and gene activation of CREB/ATF and AP1. J Virol 64: 2004–2013

    CAS  PubMed  Google Scholar 

  • Kozak M (1987) An analysis of 5’-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15: 8125–8132

    CAS  PubMed  Google Scholar 

  • Krajcsi P, Wold WSM (1992) The adenovirus E3–14.5K protein which is required for prevention of TNF cytolysis and for down-regulation of the EGF receptor contains phosphoserine. Virology 187: 492–498

    CAS  PubMed  Google Scholar 

  • Krajcsi P, Tollefson AE, Anderson CW, Stewart AR, Carlin CR, Wold WSM (1992a) The E3–10.4K protein of adenovirus is an integral membrane protein that is partially cleaved between Ala22 and Ala23 and has a Ccyt orientation. Virology 187: 131–144

    CAS  PubMed  Google Scholar 

  • Krajcsi P, Tollefson AE, Anderson CW, Wold WSM (1992b) The adenovirus E3 14.5-kilodalton protein, which is required for down-regulation of the epidermal growth factor receptor and prevention of tumor necrosis factor cytolysis, is an integral membrane protein oriented with its C terminus in the cytoplasm. J Virol 66: 1665–1673

    CAS  PubMed  Google Scholar 

  • Krajcsi P, Tollefson AE, Wold WSM (1992c) The E3–14.5K integral membrane protein of adenovirus that is required for down-regulation of the EGF receptor and for prevention of TNF cytolysis is O-glycosy- lated but not N-glycosylated. Virology 188: 570–579

    CAS  PubMed  Google Scholar 

  • Krönke M, Schütze S, Scheurich P, Pfizenmaier K (1992) TNF signal transduction and TNF-responsive genes. Immunol Ser 56: 189–216

    PubMed  Google Scholar 

  • Kuivinen E, Hoffman BL, Hoffman PA, Carlin CR (1993) Structurally related class I and Class II receptor protein tyrosine kinases are down-regulated by the same E3 protein coded for by human group C adenoviruses. J Cell Biol 120: 1271–1279

    CAS  PubMed  Google Scholar 

  • Kvist S, Ostberg L, Persson H, Philipson L, Peterson PA (1978) Molecular association between transplantation antigens and cell surface antigen in adenovirus-transformed cell line. Proc Natl Acad Sci USA 75: 5674–5678

    CAS  PubMed  Google Scholar 

  • Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369: 156–160

    CAS  PubMed  Google Scholar 

  • Lane JR, Neumann DA, Lafond-Walker A, Herskowitz A, Rose NR (1992) Interleukin 1 or tumor necrosis factor can promote coxsackie B3-induced myocarditis in resistant B10.A mice. J Exp Med 175: 1123–1129

    CAS  PubMed  Google Scholar 

  • Laster SM, Wood JG, Gooding LR (1988) Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J Immunol 141: 2629–2634

    CAS  PubMed  Google Scholar 

  • Lavery DJ, Fu SM, Lufkin T, Chen-Kiang S (1987) Productive infection of cultured human lymphoid cells by adenovirus. J Virol 61: 1466–1472

    CAS  PubMed  Google Scholar 

  • Lin L-L, Lin AY, Knopf JL (1992) Cytosolic phospholipase A2 is coupled to hormonally regulated release of arachidonic acid. Proc Natl Acad Sci USA 89: 6147–6151

    CAS  PubMed  Google Scholar 

  • Lin L-L, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ (1993) cPLA2 is phosphorylated and activated by MAP kinase. Cell 72: 269–278

    CAS  PubMed  Google Scholar 

  • Lippé R, Luke E, Kuah YT, Lomas C, Jefferies WA (1991) Adenovirus infection inhibits the phosphorylation of major histocompatibility complex class I proteins. J Exp Med 174: 1159–1166

    PubMed  Google Scholar 

  • Liu J, Mathias S, Yang Z, Kolesnick RN (1994) Renaturation and tumor necrosis factor-a stimulation of a 97-kDa ceramide-activated protein kinase. J Biol Chem 269: 3047–3052

    CAS  PubMed  Google Scholar 

  • Machleidt T, Wiegmann K, Henkel T, Schütze S, Baeuerle P, Krönke M (1994) Sphingomyelinase activates proteolytic Iκβ-α degradation in a cell-free system. J Biol Chem 269: 13760–13765

    CAS  PubMed  Google Scholar 

  • Mathias S, Kolesnick R (1993) Ceramide: a novel second messenger. Adv Lipid Res 25: 65–90

    CAS  PubMed  Google Scholar 

  • Matsuse T, Hayashi S, Kuwano K, Keunecke H, Jefferies WA, Hogg JC (1992) Latent adenoviral infection in the pathogenesis of chronic airways obstruction. Am Rev Respir Dis 146: 177–184

    CAS  PubMed  Google Scholar 

  • Mayer A, Gelderblom H, Kümel G, Jungwirth C (1992) Interferon-γ-induced assembly block in the replication cycle of adenovirus 2: augmentation by tumor necrosis factor-a. Virology 187: 372–376

    CAS  PubMed  Google Scholar 

  • Mei Y-F, Wadell G (1992) The nucleotide sequence of adenovirus type 11 early 3 region: comparison of genome type Ad11 p and Ad11 a. Virology 191: 125–133

    CAS  PubMed  Google Scholar 

  • Mei Y-F, Wadell G (1993) Hemagglutination properties and nucleotide sequence analysis of the fiber gene of adenovirus genome types 11 p and 11a. Virology 194: 453–462

    CAS  PubMed  Google Scholar 

  • Mestan J, Digel W, Mittnacht S, Hillen H, Blohm D, Möller A, Jacobsen H, Kirchner H (1986) Antiviral effects of recombinant tumour necrosis factor in vitro. Nature 323: 816–819

    CAS  PubMed  Google Scholar 

  • Moran E (1993) Interaction of adenoviral proteins with pRB and p53. FASEB J 7: 880–885

    CAS  PubMed  Google Scholar 

  • Morin JE, Lubeck MD, Barton JE, Conley AJ, Davis AR, Hung PP (1987) Recombinant adenovirus induces antibody response to hepatitis B virus surface antigen in hamsters. Proc Natl Acad Sci USA 84: 4626–4630

    CAS  PubMed  Google Scholar 

  • Nevins JR (1992) E2F: a link between the Rb tumor supressor protein and viral oncoproteins. Science 258: 424–429

    CAS  PubMed  Google Scholar 

  • Nevins JR, Ginsberg HS, Blanchard J-M, Wilson MC, Darnell Jr JE (1979) Regulation of the primary expression of the early adenovirus transcription units. J Virol 32: 727–733

    CAS  PubMed  Google Scholar 

  • Nilsson T, Jackson M, Peterson PA (1989) Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum. Cell 58: 707–718

    CAS  PubMed  Google Scholar 

  • Obeid LM, Linardic CM, Karolak LA, Hannun YA (1993) Programmed cell death induced by ceramide. Science 259: 1769–1771

    CAS  PubMed  Google Scholar 

  • Ozawa K, Hagiwara H, Tang X, Saka F, Kitabayashi I, Shiroki K, Fujinaga K, Israël A, Gachelin G, Yokoyama K (1993) Negative regulation of the gene for H-2Kb class I antigen by adenovirus 12-E1A is mediated by a CAA repeated element. J Biol Chem 268: 27258–27268

    CAS  PubMed  Google Scholar 

  • Pääbo S, Weber F, Kämpe O, Schaffner W, Peterson PA (1983) Association between transplantation antigens and a viral membrane protein synthesized from a mammalian expression vector. Cell 35: 445–453

    Google Scholar 

  • Pääbo S, Nilsson T, Peterson PA (1986a) Adenoviruses of subgenera B, C, D, and E modulate cell- surface expression of major histocompatibility complex class I antigens. Proc Natl Acad Sci USA 83: 9665–9669

    PubMed  Google Scholar 

  • Pääbo S, Weber F, Nilsson T, Schaffner W, Peterson PA (1986b) Structural and functional dissection of an MHC class I antigen-binding adenovirus glycoprotein. EMBO J 5:1921–1927

    PubMed  Google Scholar 

  • Pääbo S, Bhat BM, Wold WSM, Peterson PA (1987) A short sequence in the COOH terminus makes an adenovirus membrane glycoprotein a resident of the endoplasmic reticulum. Cell 50: 311–317

    PubMed  Google Scholar 

  • Pääbo S, Severinsson L, Andersson M, Martens I, Nilsson T, Peterson PA (1989) Adenovirus proteins and MHC expression. Adv Cancer Res 52: 151–163

    PubMed  Google Scholar 

  • Paya CV, Kenmotsu N, Schoon RA, Leibson PJ (1988) Tumor necrosis factor and lymphotoxin secretion by human natural killer cells leads to antiviral cytotoxicity. J Immunol 141: 1989–1995

    CAS  PubMed  Google Scholar 

  • Persson H, Öberg B, Philipson L (1978) Purification and characterization of an early protein (E14K) from adenovirus type 2-infected cells. J Virol 28: 119–139

    CAS  PubMed  Google Scholar 

  • Persson H, Signäs C, Philipson L (1979) Purification and characterization of an early glycoprotein from adenovirus type 2-infected cells. J Virol 29: 938–948

    CAS  PubMed  Google Scholar 

  • Persson H, Jansson M, Philipson L (1980a) Synthesis and genomic site for an adenovirus type 2 early glycoprotein. J Mol Biol 136: 375–394

    CAS  PubMed  Google Scholar 

  • Persson H, Jornväll H, Zabielski J (1980b) Multiple mRNA species for the precursor to an adenovirus- encoded glycoprotein: identification and structure of the signal sequence. Proc Natl Acad Sci USA 77: 6349–6353

    CAS  PubMed  Google Scholar 

  • Raines MA, Kolesnick RN, Golde DW (1993) Sphingomyelinase and ceramide activate mitogen- activated protein kinase in myeloid HL-60 cells. J Biol Chem 268: 14572–14575

    CAS  PubMed  Google Scholar 

  • Rammensee H-G, Falk K, Rötzschke O (1993) Peptides naturally presented by MHC class I molecules. Annu Rev Immunol 11: 213–244

    CAS  PubMed  Google Scholar 

  • Ranheim TS, Shisler J, Horton TM, Wold LJ, Gooding LR, Wold WSM (1993) Characterization of mutants within the gene for the adenovirus E3 14.7-kilodalton protein which prevents cytolysis by tumor necrosis factor. J Virol 67: 2159–2167

    CAS  PubMed  Google Scholar 

  • Rawle FC, Tollefson AE, Wold WSM, Gooding LR (1989) Mouse anti-adenovirus cytotoxic T lymphocytes. Inhibition of lysis by E3 gp19K but not E3 14.7K. J Immunol 143: 2031–2037

    CAS  PubMed  Google Scholar 

  • Rawle FC, Knowles BB, Ricciardi RP, Brahmacheri V, Duerksen-Hughes P, Wold WSM (1991) Specificity of the mouse cytotoxic T lymphocyte response to adenovirus 5. E1 A is immunodominant in H-2b, but not in H-2d or H-2k mice. J Immunol 146: 3977–3984

    CAS  PubMed  Google Scholar 

  • Roberts RJ, Akusjärvi G, Aleström P, Gelinas RE, Gingeras TR, Sciaky D, Pettersson U (1986) A consensus sequence for the adenovirus-2 genome. In: Doerfler WE (ed) Adenovirus DNA, the viral genome and its expression. Nijhoff, Boston, pp 1–51

    Google Scholar 

  • Ross S, Levine AJ (1979) The genomic map position of the adenovirus type 2 glycoprotein. Virology 99: 427–430

    CAS  PubMed  Google Scholar 

  • Routes JM, Metz BA, Cook JL (1993) Endogenous expression of E1A in human cells enhances the effect of adenovirus E3 on class I major histocompatibility complex antigen expression. J Virol 67: 3176–3181

    CAS  PubMed  Google Scholar 

  • Scaria A, Wold WSM (1994) Fine-mapping of sequences that suppress splicing in the E3 complex transcription unit of adenovirus. Virology 205: 406–416

    CAS  PubMed  Google Scholar 

  • Scaria A, Tollefson AE, Saha SK, Wold WSM (1992) The E3–11.6K protein of adenovirus is an Asn-glyco- sylated integral membrane protein that localizes to the nuclear membrane. Virology 191: 743–753

    CAS  PubMed  Google Scholar 

  • Schütze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, Krönke M (1992) TNF activates NF-kB by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71: 765–776

    PubMed  Google Scholar 

  • Schrier PI, Bernards R, Vaessen RTMJ, Houweling A, van der Eb AJ (1983) Expression of class I major histocompatibility antigens switched off by highly oncogenic adenovirus 12 in transformed rat cells. Nature 305: 771–775

    CAS  PubMed  Google Scholar 

  • Severinsson L, Martens I, Peterson PA (1986) Differential association between two human MHC class I antigens and an adenoviral glycoprotein. J Immunol 137: 1003–1009

    CAS  PubMed  Google Scholar 

  • Shaw AR, Ziff EB (1980) Transcripts from the adenovirus-2 major late promoter yield a single early family of 3’ coterminal mRNAs and five late families. Cell 22: 905–916

    CAS  PubMed  Google Scholar 

  • Shemesh J, Rotem-Yehudar R, Ehrlich R (1991) Transcriptional and postranscriptional regulation of class I major histocompatibility complex genes following transformation with human adenoviruses. J Virol 65: 5544–5548

    CAS  PubMed  Google Scholar 

  • Signäs C, Katze MG, Persson H, Philipson L (1982) An adenovirus glycoprotein binds heavy chains of class I transplantation antigens from man and mouse. Nature 299: 175–178

    PubMed  Google Scholar 

  • Signäs C, Akusjärvi G, Pettersson U (1986) Region E3 of human adenoviruses; differences between the oncogenic adenovirus-3 and the non-oncogenic adenovirus-2. Gene 50: 173–184

    PubMed  Google Scholar 

  • Silver J, Anderson CW (1988) Interaction of human adenovirus serotype 2 with human lymphoid cells. Virology 165: 377–387

    CAS  PubMed  Google Scholar 

  • Smith CA, Farrah T, Goodwin RG (1994) The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76: 959–962

    CAS  PubMed  Google Scholar 

  • Smith GL (1994) Virus strategies for evasion of the host response to infection. Trends Microbiol 2: 81–88

    CAS  PubMed  Google Scholar 

  • Sprengel J, Schmitz B, Heuss-Neitzel D, Zock C, Doerfler W (1994) Nucleotide sequence of human adenovirus type 12 DNA: comparative functional analysis. J Virol 68: 379–389

    CAS  PubMed  Google Scholar 

  • Stålhandske P, Persson H, Perrieaudet M, Philipson L, Pettersson U (1983) Structure of three spliced mRNAs from region E3 of adenovirus type 2. Gene 22: 157–165

    PubMed  Google Scholar 

  • Stein R, Ziff EB (1984) HeLa cell beta-tubulin gene transcription is stimulated by adenovirus 5 in parallel with viral early genes by an E1a-dependent mechanism. Mol Cell Biol 4: 2792–2801

    CAS  PubMed  Google Scholar 

  • Stewart AR, Tollefson AE, Krajcsi P, Yei S-P, Wold WSM (1995) The adenovirus E3 10.4K and 14.5K proteins, which function to prevent cytolysis by tumor necrosis factor and to downregulate the epidermal growth factor receptor, are localized in the plasma membrane. J Virol 69: 172–181

    CAS  PubMed  Google Scholar 

  • Suffys P, Beyaert R, DeValck D, Vanhaesebroeck B, Van Roy F, Fiers W (1991) Tumour-necrosis-factor- mediated cytotoxicity is correlated with phospholipase-A2 activity, but not with arachidonic acid release per se. Eur J Biochem 195: 465–475

    CAS  PubMed  Google Scholar 

  • Tanaka Y, Tevethia SS (1988) Differential effect of adenovirus 2 E3/19K glycoprotein on the expression of H-2Kb and H-2Db class I antigens and H-2Kb-and H-2Db-restricted SV40-specific CTL-mediated lysis. Virology 165: 357–366

    CAS  PubMed  Google Scholar 

  • Tartaglia LA, Ayres TM, Wong GHW, Goeddel DV (1993) A novel domain within the 55 kd TNF receptor signals cell death. Cell 74: 845–853

    CAS  PubMed  Google Scholar 

  • Tollefson AE, Wold WSM (1988) Identification and gene mapping of a 14,700-molecular-weight protein encoded by region E3 of group C adenoviruses. J Virol 62: 33–39

    CAS  PubMed  Google Scholar 

  • Tollefson AE, Krajcsi P, Pursley MH, Gooding LR, Wold WSM (1990a) A 14,500 MW protein is coded by region E3 of group C human adenoviruses. Virology 175: 19–29

    CAS  PubMed  Google Scholar 

  • Tollefson AE, Krajcsi P, Yei S, Carlin CR, Wold WSM (1990b) A 10,400-molecular-weight membrane protein is coded by region E3 of adenovirus. J Virol 64: 794–801

    CAS  PubMed  Google Scholar 

  • Tollefson AE, Stewart AR, Yei S, Saha SK, Wold WSM (1991) The 10,400- and 14,500-dalton proteins encoded by region E3 of adenovirus form a complex and function together to down-regulate the epidermal growth factor receptor. J Virol 65: 3095–3105

    CAS  PubMed  Google Scholar 

  • Tollefson AE, Scaria A, Saha SK, Wold WSM (1992) The 11,600-Mw protein encoded by region E3 of adenovirus is expressed early but is greatly amplified at late stages of infection. J Virol 66: 3633–3642

    CAS  PubMed  Google Scholar 

  • Tufariello J, Cho S, Horwitz MS (1994) The adenovirus E3 14.7-kilodalton protein which inhibits cytolysis by tumor necrosis factor increases the virulence of vaccinia virus in a murine pneumonia model. J Virol 68: 453–462

    CAS  PubMed  Google Scholar 

  • Uhlen M, Svensson C, Josephson S, Aleström P, Chattapadhyaya JB, Pettersson U, Philipson L (1982) Leader arrangement in the adenovirus fiber mRNA. EMBO J 1: 249–254

    CAS  PubMed  Google Scholar 

  • Van Lint J, Agostinis P, Vandevoorde V, Haegeman G, Fiers W, Merlevede W, Vandenheede JR (1992) Tumor necrosis factor stimulates multiple serine/threonine protein kinases in Swiss 3T3 and L929 cells. J Biol Chem 267: 25916–25921

    PubMed  Google Scholar 

  • Vasavada R, Eager KB, Barbanti-Brodano G, Caputo A, Ricciardi RP (1986) Adenovirus type 12 early region 1A proteins repress class I HLA expression in transformed human cells. Proc Natl Acad Sci USA 83: 5257–5261

    CAS  PubMed  Google Scholar 

  • Vassalli P (1992) The pathophysiology of tumor necrosis factors. Annu Rev Immunol 10: 411–452

    CAS  PubMed  Google Scholar 

  • Vietor I, Schwenger P, Li W, Schlessinger J, Vilcek J (1993) Tumor necrosis factor-induced activation and increased tyrosine phosphorylation of mitogen-activated protein (MAP) kinase in human fibroblasts. J Biol Chem 268: 18994–18999

    CAS  PubMed  Google Scholar 

  • Vilcek J, Lee TH (1991) Tumor necrosis factor. J Biol Chem 266: 7313–7316

    CAS  PubMed  Google Scholar 

  • Wang EW, Scott MO, Ricciardi RP (1988) An adenovirus mRNA which encodes a 14,700-Mr protein that maps to the last open reading frame in region E3 is expressed during infection. J Virol 62:1456–1459

    CAS  PubMed  Google Scholar 

  • White E, Cipriani R (1989) Specific disruption of intermediate filaments and the nuclear lamina by the 19-kDa product of the adenovirus E1 B oncogene. Proc Natl Acad Sci USA 86: 9886–9890

    CAS  PubMed  Google Scholar 

  • White E, Cipriani R (1990) Role of adenovirus E1B proteins in transformation: altered organization of intermediate filaments in transformed cells that express the 19-kilodalton protein. Mol Cell Biol 10: 120–130

    CAS  PubMed  Google Scholar 

  • White E, Sabbatini P, Debbas M, Wold WSM, Kusher Dl, Gooding LR (1992) The 19-kilodalton adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor α. Mol Cell Biol 12: 2570–2580

    CAS  PubMed  Google Scholar 

  • Wiegmann K, Schütze S, Kampen E, Himmler A, Machleidt T, Kränke M (1992) Human 55-kDa receptor for tumor necrosis factor coupled to signal transduction cascades. J Biol Chem 267: 17997–18001

    CAS  PubMed  Google Scholar 

  • Williams JL, Garcia J, Harrich D, Pearson L, Wu F, Gaynor R (1990) Lymphoid specific gene expression of the adenovirus early region 3 promoter is mediated by NF-k binding motifs. EMBO J 9: 4435–4442

    CAS  PubMed  Google Scholar 

  • Wilson-Rawls J, Wold WSM (1993) The E3–6.7K protein of adenovirus is an Asn-linked integral membrane glycoprotein localized in the endoplasmic reticulum. Virology 195: 6–15

    CAS  PubMed  Google Scholar 

  • Wilson-Rawls J, Saha SK, Krajcsi P, Tollefson AE, Gooding LR, Wold WSM (1990) A 6700 MW membrane protein is encoded by region E3 of adenovirus type 2. Virology 178: 204–212

    CAS  PubMed  Google Scholar 

  • Wilson-Rawls J, Deutscher SL, Wold WSM (1994) The signal-anchor domain of adenovirus E3–6.7K, a type III integral membrane protein, can direct adenovirus E3-gp19K, a type I integral membrane protein, into the membrane of the endoplasmic reticulum. Virology 201: 66–76

    CAS  PubMed  Google Scholar 

  • Wold WSM (1993) Adenovirus genes that modulate the sensitivity of virus-infected cells to lysis by TNF. J Cell Biochem 53: 329–335

    CAS  PubMed  Google Scholar 

  • Wold WSM, Gooding LR (1989) Adenovirus region E3 proteins that prevent cytolysis by cytotoxic T cells and tumor necrosis factor. Mol Biol Med 6: 433–452

    CAS  PubMed  Google Scholar 

  • Wold WSM, Gooding LR (1991) Region E3 of adenovirus: a cassette of genes involved in host immunosurveillance and virus-cell interactions. Virology 184: 1–8

    CAS  PubMed  Google Scholar 

  • Wold WSM, Cladaras C, Magie SC, Yacoub N (1984) Mapping a new gene that encodes an 11,600-molecular-weight protein in the E3 transcription unit of adenovirus 2. J Virol 52: 307–313

    CAS  PubMed  Google Scholar 

  • Wold WSM, Cladaras C, Deutscher SL, Kapoor QS (1985) The 19-kDa glycoprotein coded by region E3 of adenovirus: Purification, characterization, and structural analysis. J Biol Chem 260: 2424–2431

    CAS  PubMed  Google Scholar 

  • Wold WSM, Deutscher SL, Takemori N, Bhat BM, Magie SC (1986) Evidence that AGUAUAUGA and CCAAGAUGA initiate translation in the same mRNA in region E3 of adenovirus. Virology 148: 168–180

    CAS  PubMed  Google Scholar 

  • Wong GHW, Goeddel DV (1986) Tumour necrosis factors a and ß inhibit virus replication and synergize with interferons. Nature 323: 819–822

    CAS  PubMed  Google Scholar 

  • Yewdell JW, Bennink JR, Eager KB, Ricciardi RP (1988) CTL recognition of adenovirus-transformed cells infected with influenza virus: lysis by anti-influenza CTL parallels adenovirus-12-induced suppression of class I MHC molecules. Virology 162: 236–238

    CAS  PubMed  Google Scholar 

  • Zilli D, Voelkel-Johnson C, Skinner T, Laster SM (1992) The adenovirus E3 region 14.7 kDa protein, heat and sodium arsenite inhibit the TNF-induced release of arachidonic acid. Biochem Biophys Res Commun 188: 177–183

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wold, W.S.M., Tollefson, A.E., Hermiston, T.W. (1995). E3 Transcription Unit of Adenovirus. In: Doerfler, W., Böhm, P. (eds) The Molecular Repertoire of Adenoviruses I. Current Topics in 199/I Microbiology and Immunology, vol 199/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79496-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79496-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79498-8

  • Online ISBN: 978-3-642-79496-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics