Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 270))

Abstract

The family of Toll-like receptors (TLRs) plays an important role in the innate immune response to pathogens. TLRs sense pathogen associated molecular patterns (PAMP) and lead to the stimulation of immune cells. In man, so far ten members (TLR1-10) have been reported. This review focuses on TLR9 which is an essential component for the recognition of bacterial CpG-DNA. Expression of TLR9 and structural consideration as well as direct ligand interaction of TLR9 and CpG-DNA are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad-Nejad P, Hacker H, Rutz M, Bauer S, Vabulas RM, Wagner H (2002) Bacterial CpG-DNA and lipopolysaccharide activate Toll-like receptors at distinct cellular compartments. Eur J Immunol, in press

    Google Scholar 

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732–738

    Article  PubMed  CAS  Google Scholar 

  • Ballas ZK, Rasmussen WL, Krieg AM (1996) Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol 157: 1840–1845

    PubMed  CAS  Google Scholar 

  • Bauer M, Heeg K, Wagner H, Lipford GB (1999) DNA activates human immune cells through a CpG sequence-dependent manner. Immunology 97: 699–705

    Article  PubMed  CAS  Google Scholar 

  • Bauer S, Kirschning CJ, Hacker H, Redecke V, Hausmann S, Akira S, Wagner H, Lipford GB (2001) Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA 98: 9237–9242

    Article  PubMed  CAS  Google Scholar 

  • Blunt T, Gell D, Fox M, Taccioli GE, Lehmann AR, Jackson SP, Jeggo PA (1996) Identification of a nonsense mutation in the carboxyl-terminal region of DNA-dependent protein kinase catalytic subunit in the scid mouse. Proc Natl Acad Sci USA 93: 10285–10290

    Article  PubMed  CAS  Google Scholar 

  • Chiaramonte MG, Hesse M, Cheever AW, Wynn TA (2000) CpG oligonucleotides can prophylactically immunize against Th2-mediated schistosome egg-induced pathology by an IL-12-independent mechanism. J Immunol 164: 973–985

    PubMed  CAS  Google Scholar 

  • Cho HJ, Takabayashi K, Cheng PM, Nguyen MD, Corr M, Tuck S, Raz E (2000) Immunostimulatory DNA-based vaccines induce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism. Nat Biotechnol 18: 509–514

    Article  PubMed  CAS  Google Scholar 

  • Chu W, Gong X, Li Z, Takabayashi K, Ouyang H, Chen Y, Lois A, Chen DJ, Li GC, Karin M, Raz E (2000) DNA-PKcs is required for activation of innate immunity by immunostimulatory DNA. Cell 103: 909–918

    Article  PubMed  CAS  Google Scholar 

  • Chuang T, Ulevitch RJ (2001) Identification of hTLRlO: a novel human Toll-like receptor preferentially expressed in immune cells. Biochim Biophys Acta 1518: 157–161

    PubMed  CAS  Google Scholar 

  • da Silva CJ, Soldau K, Christen U, Tobias PS, Ulevitch RJ (2001) Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex transfer from CD 14 to TLR4 and MD-2. J Biol Chem 276: 21129–21135

    Article  Google Scholar 

  • Danska JS, Holland DP, Mariathasan S, Williams KM, Guidos CJ (1996) Biochemical and genetic defects in the DNA-dependent protein kinase in murine scid lymphocytes. Mol Cell Biol 16: 5507–5517

    PubMed  CAS  Google Scholar 

  • Du X, Poltorak A, Wei Y, Beutler B (2000) Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw 11: 362–371

    PubMed  CAS  Google Scholar 

  • Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, Brint E, Dunne A, Gray P, Harte MT, McMurray D, Smith DE, Sims JE, Bird TA, O’Neill LA (2001) Mai (MyD88- adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413: 78–83

    Article  PubMed  CAS  Google Scholar 

  • Fujita N, Shimotake N, Ohki I, Chiba T, Saya H, Shirakawa M, Nakao M (2000) Mechanism of transcriptional regulation by methyl-CpG binding protein MBD1. Mol. Cell Biol 20: 5107–5118

    CAS  Google Scholar 

  • Hacker H, Mischak H, Miethke T, Liptay S, Schmid R, Sparwasser T, Heeg K, Lipford GB, Wagner H (1998) CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J 17: 6230–6240

    Article  PubMed  CAS  Google Scholar 

  • Hacker H, Vabulas RM, Takeuchi O, Hoshino K, Akira S, Wagner H (2000) Immune Cell Activation by Bacterial CpG-DNA through Myeloid Differentiation Marker 88 and Tumor Necrosis Factor Receptor-Associated Factor (TRAF)6. J Exp Med 192: 595–600

    Article  PubMed  CAS  Google Scholar 

  • Hajjar AM, O’Mahony DS, Ozinsky A, Underhill DM, Aderem A, Klebanoff SJ, Wilson CB (2001) Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J Immunol 166: 15–19

    PubMed  CAS  Google Scholar 

  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099–1103

    Article  PubMed  CAS  Google Scholar 

  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408: 740–745

    Article  PubMed  CAS  Google Scholar 

  • Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18: 6538–6547

    PubMed  CAS  Google Scholar 

  • Horng T, Barton GM, Medzhitov R (2001) TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol 2: 835–841

    Article  PubMed  CAS  Google Scholar 

  • Janeway CA Jr, Medzhitov R (1998) Introduction: the role of innate immunity in the adaptive immune response. Semin Immunol 10:349-350 Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, Liu YJ (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194: 863–869

    Google Scholar 

  • Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, Liu YJ (2001) Subsets of dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194:863–869

    Article  PubMed  CAS  Google Scholar 

  • Kaisho T, Takeuchi O, Kawai T, Hoshino K, Akira S (2001) Endotoxin-induced maturation of MyD88-deficient dendritic cells. J Immunol 166: 5688–5694

    PubMed  CAS  Google Scholar 

  • Kajava AV (1998) Structural diversity of leucine-rich repeat proteins. J Mol Biol 277: 519–527

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Adachi O, Ogawa T, Takeda K, Akira S (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11: 115–122

    Article  PubMed  CAS  Google Scholar 

  • Kobe B, Deisenhofer J (1994) The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci 19: 415–421

    Article  PubMed  CAS  Google Scholar 

  • Krieg AM, Wagner H (2000) Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today 21: 521–526

    Article  PubMed  CAS  Google Scholar 

  • Krieg AM, Wu T, Weeratna R, Efler SM, Love-Homan L, Yang L, Yi AK, Short D, Davis HL (1998) Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proc Natl Acad Sci USA 95: 12631–12636

    Article  PubMed  CAS  Google Scholar 

  • Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546–549

    Article  PubMed  CAS  Google Scholar 

  • Krug A, Rothenfusser S, Hornung V, Jahrsdorfer B, Blackwell S, Ballas ZK, Endres S, Krieg AM, Hartmann G (2001a) Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur. J Immunol 31: 2154–2163

    Article  CAS  Google Scholar 

  • Krug A, Towarowski A, Britsch S, Rothenfusser S, Hornung V, Bals R, Giese T, Engelmann H, Endres S, Krieg AM, Hartmann G (2001b) Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol 31: 3026–3037

    Article  CAS  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann J A (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 20; 86: 973–983

    Article  CAS  Google Scholar 

  • Lien E, Means TK, Heine H, Yoshimura A, Kusumoto S, Fukase K, Fenton MJ, Oikawa M, Qureshi N, Monks B, Finberg RW, Ingalls RR, Golenbock DT (2000) Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest 105: 497–504

    Article  PubMed  CAS  Google Scholar 

  • Lipford GB, Bauer M, Blank C, Reiter R, Wagner H, Heeg K (1997a) CpG-containing synthe¬tic oligonucleotides promote B and cytotoxic T cell responses to protein antigen: a new class of vaccine adjuvants. Eur J Immunol 27: 2340–2344

    Article  CAS  Google Scholar 

  • Lipford GB, Sparwasser T, Bauer M, Zimmermann S, Koch ES, Heeg K, Wagner H (1997b) Immunostimulatory DNA: sequence-dependent production of potentially harmful or useful cytokines. Eur J Immunol 27: 3420–3426

    Article  CAS  Google Scholar 

  • Mansell A, Reinicke A, Worrall DM, O’Neill LA (2001) The serine protease inhibitor antithrombin III inhibits LPS-mediated NF-kappaB activation by TLR-4. FEBS Lett 508: 313–317

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R (2001) Toll-like receptors and innate immunity. Nature reviews 1: 135–145

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R, Janeway C Jr (2000) Innate immunity. N Engl J Med 343: 338–344

    CAS  Google Scholar 

  • Medzhitov R, Janeway CA Jr (1997a) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9: 4–9

    Article  CAS  Google Scholar 

  • Medzhitov R, Janeway CA Jr (1997b) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91: 295–298

    Article  CAS  Google Scholar 

  • Miettinen M, Sareneva T, Julkunen I, Matikainen S (2001) IFNs activate toll-like receptor gene expression in viral infections. Genes Immun 2: 349–355

    Article  PubMed  CAS  Google Scholar 

  • Murakami S, Iwaki D, Mitsuzawa H, Sano H, Takahashi H, Voelker DR, Akino T, Kuroki Y (2001) Surfactant protein A inhibits peptidoglycan-induced TNF-alpha secretion in U937 cells and alveolar macrophages by direct interaction with toll-like receptor 2. J Biol Chem in press

    Google Scholar 

  • Muzio M, Bosisio D, Polentarutti N, D’amico G, Stoppacciaro A, Mancinelli R, van’t Veer C, Penton-Rol G, Ruco LP, Allavena P, Mantovani A (2000) Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 164: 5998 - 6004

    PubMed  CAS  Google Scholar 

  • O’Neill LA, Greene C (1998) Signal transduction pathways activated by the IL-1 receptor family: ancient signaling machinery in mammals, insects, and plants. J Leukoc Biol 63: 650 - 657

    PubMed  Google Scholar 

  • Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc Natl Acad Sci USA 25; 97: 13766 - 13771

    Article  CAS  Google Scholar 

  • Poltorak A, Ricciardi-Castagnoli P, Citterio S, Beutler B (2000) Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc Natl Acad Sci USA 97: 2163 - 2167

    Article  PubMed  CAS  Google Scholar 

  • Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF (1998) A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 20; 95: 588 - 593

    Article  CAS  Google Scholar 

  • Schnare M, Holtdagger AC, Takeda K, Akira S, Medzhitov R (2000) Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr Biol 10: 1139 - 1142

    Article  PubMed  CAS  Google Scholar 

  • Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189: 1777 - 1782

    Article  PubMed  CAS  Google Scholar 

  • Sparwasser T, Koch ES, Vabulas RM, Heeg K, Lipford GB, Ellwart JW, Wagner H (1998) Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur J Immunol 28: 2045 - 2054

    Article  PubMed  CAS  Google Scholar 

  • Sparwasser T, Miethke T, Lipford G, Erdmann A, Hacker H, Heeg K, Wagner H (1997) Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factor-alpha-mediated shock. Eur J Immunol 27: 1671 - 1679

    Article  PubMed  CAS  Google Scholar 

  • Takeshita F, Leifer CA, Gursel I, Ishii KJ, Takeshita S, Gursel M, Klinman DM (2001) Cutting edge: role of toll-like receptor 9 in cpg dna-induced activation of human cells. J Immunol 167: 3555 - 3558

    PubMed  CAS  Google Scholar 

  • Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13: 933 - 940

    Article  PubMed  CAS  Google Scholar 

  • Tighe H, Takabayashi K, Schwartz D, Van Nest G, Tuck S, Eiden JJ, Kagey-Sobotka A, Creticos PS, Lichtenstein LM, Spiegelberg HL, Raz E (2000) Conjugation of immunostimulatory DNA to the short ragweed allergen amb a 1 enhances its immunogenicity and reduces its allergenicity. J Allergy Clin Immunol 106: 124 - 134

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga T, Yamamoto H, Shimada S, Abe H, Fukuda T, Fujisawa Y, Furutani Y, Yano O, Kataoka T, Sudo T (1984) Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity. J Natl Cancer Inst 72: 955 - 962

    PubMed  CAS  Google Scholar 

  • Verthelyi D, Ishii K, Gursel M, Takeshita F, Klinman D (2001) Human peripheral blood cells differentially recognize and respond to two distinct CPG motifs. J Immunol 166: 2372 - 2377

    PubMed  CAS  Google Scholar 

  • Wagner H (1999) Bacterial CpG DNA activates immune cells to signal infectious danger. Adv Immunol 73: 329 - 368

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann S, Egeter O, Hausmann S, Lipford GB, Rocken M, Wagner H, Heeg K (1998) CpG oligodeoxynucleotides trigger protective and curative Thl responses in lethal murine leishmaniasis. J Immunol 160: 3627 - 3630

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bauer, S., Wagner, H. (2002). Bacterial CpG-DNA Licenses TLR9. In: Beutler, B., Wagner, H. (eds) Toll-Like Receptor Family Members and Their Ligands. Current Topics in Microbiology and Immunology, vol 270. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59430-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59430-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63975-3

  • Online ISBN: 978-3-642-59430-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics