Skip to main content

MyD88 as a Bottle Neck in Toll/IL-1 Signaling

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 270))

Abstract

Myeloid differentiation factor 88 (MyD88) is an adaptor molecule composed of an N-terminal death domain and a C-terminal Toll/interleukin (IL)-1R homology domain. Ligand binding to Toll-like receptor (TLR)/IL-1R family members results in the association of MyD88 to the cytoplasmic tail of receptors; this then initiates the signaling cascade that leads to the activation of nuclear factor-кB and mitogen-activated protein kinases. Analysis of MyD88-deficient mice revealed its essential role in TLR/IL-1R signaling as well as in both the innate and the adaptive immune response.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi K, Tsutsui H, Kashiwamura S, Seki E, Nakano H, Takeuchi O, Takeda K, Okumura K, Van Kaer L, Okamura H, Akira S, Nakanishi K (2001) Plasmodium berghei infection in mice induces liver injury by an IL-12- and toll-like receptor/myeloid differentiation factor 88 dependent mechanism. J Immunol 167: 5928–5934

    PubMed  CAS  Google Scholar 

  • Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K, Akira S (1998) Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9: 143–150

    Article  PubMed  CAS  Google Scholar 

  • Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406: 782–787

    Article  PubMed  CAS  Google Scholar 

  • Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2: 675–680

    Article  PubMed  CAS  Google Scholar 

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-KB by Toll- like receptor 3. Nature 413: 732–738

    Article  PubMed  CAS  Google Scholar 

  • Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, Klimpel GR, Godowski P, Zychlinsky A (1999) Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor- 2. Science 285: 736–739

    Article  PubMed  CAS  Google Scholar 

  • Aliprantis AO, Yang RB, Weiss DS, Godowski P, Zychlinsky A (2000) The apoptotic signaling pathway activated by Toll-like receptor-2. Embo J 19: 3325–3336

    Article  PubMed  CAS  Google Scholar 

  • Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in plant-microbe interactions. Science 276: 726–733

    Article  PubMed  CAS  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392: 245–252

    Article  PubMed  CAS  Google Scholar 

  • Bonnert TP, Garka KE, Parnet P, Sonoda G, Testa JR, Sims JE (1997) The cloning and characterization of human MyD88: a member of an IL-1 receptor related family. FEBS Lett 402: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Bowie A, Kiss-Toth E, Symons JA, Smith GL, Dower SK, O’Neill LA (2000) A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci U S A 97: 10162–10167

    Article  PubMed  CAS  Google Scholar 

  • Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR, Godowski PJ, Modlin RL (1999) Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285: 732–736

    Article  PubMed  CAS  Google Scholar 

  • Bulut Y, Faure E, Thomas L, Equils O, Arditi M (2001) Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J Immunol 167: 987–994

    PubMed  CAS  Google Scholar 

  • Burns K, Clatworthy J, Martin L, Martinon F, Plumpton C, Maschera B, Lewis A, Ray K, Tschopp J, Volpe F (2000) Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat Cell Biol 2: 346–351

    Article  PubMed  CAS  Google Scholar 

  • Burns K, Martinon F, Esslinger C, Pahl H, Schneider P, Bodmer JL, Di Marco F, French L, Tschopp J (1998) MyD88, an adapter protein involved in interleukin-1 signaling. J Biol Chem 273: 12203–12209

    Article  PubMed  CAS  Google Scholar 

  • Cao Z, Henzel WJ, Gao X (1996) IRAK: a kinase associated with the interleukin-1 receptor. Science 271: 1128–1131

    Article  PubMed  CAS  Google Scholar 

  • Castrillo A, Pennington DJ, Otto F, Parker PJ, Owen MJ, Bosca L (2001) Protein kinase cepsilon is required for macrophage activation and defense against bacterial infection. J Exp Med 194: 1231–1242

    Article  PubMed  CAS  Google Scholar 

  • Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin conjugating enzyme complex and a unique polyubiquitin chain. Cell 103: 351–361

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, Brint E, Dunne A, Gray P, Harte MT, McMurray D, Smith DE, Sims JE, Bird TA, O’Neill LA (2001) Mai (MyD88- adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413: 78–83

    Article  PubMed  CAS  Google Scholar 

  • Goh KC, de Veer MJ, Williams BR (2000) The protein kinase PKR is required for p38 MAPK activation and the innate immune response to bacterial endotoxin. Embo J 19: 429–4297

    Article  Google Scholar 

  • Hacker H, Vabulas RM, Takeuchi O, Hoshino K, Akira S, Wagner H (2000) Immune Cell Activation by Bacterial CpG-DNA through Myeloid Differentiation Marker 88 and Tumor Necrosis Factor Receptor-Associated Factor (TRAF)6. J Exp Med 192: 595–600

    Article  PubMed  CAS  Google Scholar 

  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099–1103

    Article  PubMed  CAS  Google Scholar 

  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408: 740–745

    Article  PubMed  CAS  Google Scholar 

  • Henneke P, Takeuchi O, van Strijp JA, Guttormsen H-K, Smith JA, Schromm AB, Espevik TA, Akira S, Nizet V, Kasper D, Golenbock DT (2001) Novel engagement of CD 14 and multiple toll-like receptors by group B Streptococci. J Immunol 167: 7069–7076

    PubMed  CAS  Google Scholar 

  • Horng T, Barton GM, Medzhitov R (2001) TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol 2: 835–841

    Article  PubMed  CAS  Google Scholar 

  • Horng T, Medzhitov R (2001) Drosophila MyD88 is an adapter in the Toll signaling pathway. Proc Natl Acad Sci USA 98: 12654–12658

    Article  PubMed  CAS  Google Scholar 

  • Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162: 3749–3752

    PubMed  CAS  Google Scholar 

  • Iordanov MS, Wong J, Bell JC, Magun BE (2001) Activation of NF-KB by double stranded RNA (dsRNA) in the absence of protein kinase R and RNase L demonstrates the existence of two separate dsRNA-triggered antiviral programs. Mol Cell Biol 21: 61–72

    Article  PubMed  CAS  Google Scholar 

  • Itoh N, Nagata S (1993) A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 268: 10932–10937

    PubMed  CAS  Google Scholar 

  • Kadowaki N, Antonenko S, Liu YJ (2001) Distinct CpG DNA and polyinosinic-polycytidylic acid double-stranded RNA, respectively, stimulate CDllc-type 2 dendritic cell precursors and CDllc + dendritic cells to produce type I IFN. J Immunol 166: 2291–2295

    PubMed  CAS  Google Scholar 

  • Kaisho T, Takeuchi O, Kawai T, Hoshino K, Akira S (2001) Endotoxin-induced maturation of MyD88-deficient dendritic cells. J Immunol 166: 5688–5694

    PubMed  CAS  Google Scholar 

  • Kawai T, Adachi O, Ogawa T, Takeda K, Akira S (1999) Unresponsiveness of MyD88 deficient mice to endotoxin. Immunity 11: 115–122

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Takeuchi O, Fujita T, Inoue J, Muhlradt PF, Sato S, Hoshino K, Akira S (2001) Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol 167: 5887–5894

    PubMed  CAS  Google Scholar 

  • Leitges M, Sanz L, Martin P, Duran A, Braun U, Garcia JF, Camacho F, Diaz-Meco MT, Rennert PD, Moscat J (2001) Targeted Disruption of the zetaPKC gene results in the impairment of the NF-KB pathway. Mol Cell 8: 771–780

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre B, Reichhart JM, Hoffmann JA (1997) Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci USA 94: 14614–14619

    Article  PubMed  CAS  Google Scholar 

  • Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, Morony S, Capparelli C, Van G, Kaufman S, van der Heiden A, Itie A, Wakeham A, Khoo W, Sasaki T, Cao Z, Penninger JM, Paige CJ, Lacey DL, Dunstan CR, Boyle WJ, Goeddel DV, Mak TW (1999) TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 13: 1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Lord KA, Hoffman-Liebermann B, Liebermann DA (1990) Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene 5: 1095–1097

    PubMed  CAS  Google Scholar 

  • Means TK, Lien E, Yoshimura A, Wang S, Golenbock DT, Fenton MJ (1999) The CD 14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J Immunol 163: 6748–6755

    PubMed  CAS  Google Scholar 

  • Medzhitov R, Janeway CA, Jr (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91: 295–298

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, Janeway CA, Jr. (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2: 253–258

    Article  PubMed  CAS  Google Scholar 

  • Mitcham JL, Parnet P, Bonnert TP, Garka KE, Gerhart MJ, Slack JL, Gayle MA, Dower SK, Sims JE (1996) T1/ST2 signaling establishes it as a member of an expanding interleukin-1 receptor family. J Biol Chem 271: 5777–5783

    Article  PubMed  CAS  Google Scholar 

  • Muzio M, Natoli G, Saccani S, Levrero M, Mantovani A (1998) The human toll signaling pathway: divergence of nuclear factor KB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J Exp Med 187: 2097–2101

    Article  PubMed  CAS  Google Scholar 

  • Muzio M, Ni J, Feng P, Dixit VM (1997) IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278: 1612–1615

    Article  PubMed  CAS  Google Scholar 

  • Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K, Nakao K, Nakamura K, Katsuki M, Yamamoto T, Inoue J (1999) Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4: 353–362

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H (2001) Interleukin-18 is a unique cytokine that stimulates both Thl and Th2 responses depending on its cytokine milieu. Cytokine Growth Factor Rev 12: 53–72

    Article  PubMed  CAS  Google Scholar 

  • Ozinsky A, Smith KD, Hume D, Underhill DM (2000) Co-operative induction of pro inflammatory signaling by Toll-like receptors. J Endotoxin Res 6: 393–396

    PubMed  CAS  Google Scholar 

  • Parnet P, Garka KE, Bonnert TP, Dower SK, Sims JE (1996) IL-lRrp is a novel receptor-like molecule similar to the type I interleukin-1 receptor and its homologues T1/ST2 and IL-1R AcP. J Biol Chem 271: 3967–3970

    Article  PubMed  CAS  Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu MY, Huffel CV, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/ HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085–2088

    Article  PubMed  CAS  Google Scholar 

  • Sanz L, Diaz-Meco MT, Nakano H, Moscat J (2000) The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway. Embo J 19: 1576–1586

    Article  PubMed  CAS  Google Scholar 

  • Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R (2001) Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2: 947–950

    Article  PubMed  CAS  Google Scholar 

  • Seki E, Tsutsui H, Nakano H, Tsuji N, Hoshino K, Adachi O, Adachi K, Futatsugi S, Kuida K, Takeuchi O, Okamura H, Fujimoto J, Akira S, Nakanishi K (2001) Lipopolysaccharide induced IL-18 secretion from murine Kupffer cells independently of myeloid differentiation factor 88 that is critically involved in induction of production of IL-12 and IL-lbeta. J Immunol 166: 2651–2657

    PubMed  CAS  Google Scholar 

  • Silverman N, Maniatis T (2001) NF-KB signaling pathways in mammalian and insect innate immunity. Genes Dev 15: 2321–2342

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi O, Hoshino K, Akira S (2000a) Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol 165: 5392–5396

    CAS  Google Scholar 

  • Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11: 443–451

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi O, Kaufmann A, Grote K, Kawai T, Hoshino K, Morr M, Muhlradt PF, Akira S (2000b) Cutting edge: preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-acti- vating lipopeptide-2 activates immune cells through a toll-like receptor 2- and MyD88-dependent signaling pathway. J Immunol 164: 554–557

    CAS  Google Scholar 

  • Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13: 933–940

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi O, Takeda K, Hoshino K, Adachi O, Ogawa T, Akira S (2000c) Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int Immunol 12: 113–117

    Article  CAS  Google Scholar 

  • Uetani K, Der SD, Zamanian-Daryoush M, de La Motte C, Lieberman BY, Williams BR, Erzurum SC (2000) Central role of double-stranded RNA-activated protein kinase in microbial induction of nitric oxide synthase. J Immunol 165: 988–996

    PubMed  CAS  Google Scholar 

  • Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M, Aderem A (1999a) The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens [see comments]. Nature 401: 811–815

    Article  CAS  Google Scholar 

  • Underhill DM, Ozinsky A, Smith KD, Aderem A (1999b) Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci USA 96: 14459–14463

    Article  CAS  Google Scholar 

  • Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ (2001) TAK1 is a ubiquitin dependent kinase of MKK and IKK. Nature 412: 346–351

    Article  PubMed  CAS  Google Scholar 

  • Weber CH, Vincenz C (2001) The death domain superfamily: a tale of two interfaces? Trends Biochem Sci 26: 475–481

    Article  PubMed  CAS  Google Scholar 

  • Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z (1997) MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7: 837–847

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D (1999) Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 163: 1–5

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Takeuchi, O., Akira, S. (2002). MyD88 as a Bottle Neck in Toll/IL-1 Signaling. In: Beutler, B., Wagner, H. (eds) Toll-Like Receptor Family Members and Their Ligands. Current Topics in Microbiology and Immunology, vol 270. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59430-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59430-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63975-3

  • Online ISBN: 978-3-642-59430-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics