Skip to main content

A Logical Basis for Quantum Evolution and Entanglement

  • Chapter
Book cover Categories and Types in Logic, Language, and Physics

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8222))

Abstract

We reconsider discrete quantum causal dynamics where quantum systems are viewed as discrete structures, namely directed acyclic graphs. In such a graph, events are considered as vertices and edges depict propagation between events. Evolution is described as happening between a special family of spacelike slices, which were referred to as locative slices. Such slices are not so large as to result in acausal influences, but large enough to capture nonlocal correlations.

In our logical interpretation, edges are assigned logical formulas in a special logical system, called BV, an instance of a deep inference system. We demonstrate that BV, with its mix of commutative and noncommutative connectives, is precisely the right logic for such analysis. We show that the commutative tensor encodes (possible) entanglement, and the noncommutative seq encodes causal precedence. With this interpretation, the locative slices are precisely the derivable strings of formulas. Several new technical results about BV are developed as part of this analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

    Google Scholar 

  2. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science 2004, pp. 415–425. IEEE Computer Society (2004)

    Google Scholar 

  3. Abramsky, S., Coecke, B.: Physics from computer science. International Journal of Unconventional Computing 3, 179–197 (2007)

    Google Scholar 

  4. Lambek, J., Scott, P.: Introduction to Higher-order Categorical Logic. Cambridge Univ. Press (1986)

    Google Scholar 

  5. Girard, J.Y.: Linear logic: Its syntax and semantics. In: Girard, J.Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic. LMS Lecture Note Series, vol. 222, pp. 1–42. Cambridge University Press (1995)

    Google Scholar 

  6. Blute, R., Ivanov, I., Panangaden, P.: Discrete quantum causal dynamics. International Journal of Theoretical Phsysics 42, 2025–2041 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Markopoulou, F.: Quantum causal histories. Classical and Quantum Gravity 17, 2059–2077 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blute, R.F., Ivanov, I.T., Panangaden, P.: Discrete quantum causal dynamics (2001), http://lanl.arxiv.org/abs/gr-qc/0109053

  9. Guglielmi, A.: A system of interaction and structure. ACM Transactions on Computational Logic 8(1), 1–64 (2007), http://cs.bath.ac.uk/ag/p/SystIntStr.pdf

    Article  MathSciNet  Google Scholar 

  10. Guglielmi, A.: Deep inference, http://alessio.guglielmi.name/res/cos

  11. Sorkin, R.: Spacetime and causal sets. In: D’Olivo, J., et al. (eds.) Relativity and Gravitation: Classical and Quantum. World Scientific (1991)

    Google Scholar 

  12. Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press (1989)

    Google Scholar 

  13. Szabo, M.: Polycategories. Communications in Algebra 3, 663–689 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Blute, R., Cockett, J., Seely, R., Trimble, T.: Natural deduction and coherence for weakly distributive categories. Journal of Pure and Applied Algebra 113, 229–296 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brünnler, K.: Locality for classical logic. Notre Dame Journal of Formal Logic 47(4), 557–580 (2006), http://www.iam.unibe.ch/~kai/Papers/LocalityClassical.pdf

    Article  MathSciNet  MATH  Google Scholar 

  16. Tiu, A.F.: A local system for intuitionistic logic. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 242–256. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Guenot, N.: Nested Deduction in Logical Foundations for Computation. Phd thesis, Ecole Polytechnique (2013)

    Google Scholar 

  18. Straßburger, L.: A local system for linear logic. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp. 388–402. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Straßburger, L.: MELL in the calculus of structures. Theoretical Computer Science 309, 213–285 (2003), http://www.lix.polytechnique.fr/~lutz/papers/els.pdf

    Article  MathSciNet  MATH  Google Scholar 

  20. Brünnler, K.: Deep sequent systems for modal logic. In: Governatori, G., Hodkinson, I., Venema, Y. (eds.) Advances in Modal Logic, vol. 6, pp. 107–119. College Publications (2006), http://www.aiml.net/volumes/volume6/Bruennler.ps

  21. Straßburger, L.: Cut elimination in nested sequents for intuitionistic modal logics. In: Pfenning, F. (ed.) FOSSACS 2013. LNCS, vol. 7794, pp. 209–224. Springer, Heidelberg (2013)

    Google Scholar 

  22. Tiu, A.: A system of interaction and structure II: The need for deep inference. Logical Methods in Computer Science 2(2:4), 1–24 (2006), http://arxiv.org/pdf/cs.LO/0512036

    MathSciNet  MATH  Google Scholar 

  23. Kahramanoğulları, O.: System BV is NP-complete. Annals of Pure and Applied Logic 152(1-3), 107–121 (2007), http://dx.doi.org/10.1016/j.apal.2007.11.005

    Article  MathSciNet  MATH  Google Scholar 

  24. Straßburger, L.: Linear Logic and Noncommutativity in the Calculus of Structures. PhD thesis, Technische Universität Dresden (2003)

    Google Scholar 

  25. Straßburger, L., Guglielmi, A.: A system of interaction and structure IV: The exponentials and decomposition. ACM Trans. Comput. Log. 12(4), 23 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Blute, R.F., Panangaden, P., Slavnov, S.: Deep inference and probabilistic coherence spaces. Applied Categorical Structures 20, 209–228 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Girard, J.Y.: Between Logic and Quantic: A Tract. LMS Lecture Note Series, vol. 316, ch. 10, pp. 346–381. Cambridge University Press (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blute, R.F., Guglielmi, A., Ivanov, I.T., Panangaden, P., Straßburger, L. (2014). A Logical Basis for Quantum Evolution and Entanglement. In: Casadio, C., Coecke, B., Moortgat, M., Scott, P. (eds) Categories and Types in Logic, Language, and Physics. Lecture Notes in Computer Science, vol 8222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54789-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54789-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54788-1

  • Online ISBN: 978-3-642-54789-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics