Skip to main content

Bioinspired Adaptive Control for Artificial Muscles

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8064))

Abstract

The new field of soft robotics offers the prospect of replacing existing hard actuator technologies by artificial muscles more suited to human-centred robotics. It is natural to apply biomimetic control strategies to the control of these actuators. In this paper a cerebellar-inspired controller is successfully applied to the real-time control of a dielectric electroactive actuator. To analyse the performance of the algorithm in detail we identified a time-varying plant model which accurately described actuator properties over the length of the experiment. Using synthetic data generated by this model we compared the performance of the cerebellar-inspired controller with that of a conventional adaptive control scheme (filtered-x LMS). Both the cerebellar and conventional algorithms were able to control displacement for short periods, however the cerebellar-inspired algorithm significantly outperformed the conventional algorithm over longer duration runs where actuator characteristics changed significantly. This work confirms the promise of biomimetic control strategies for soft-robotics applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carpi, F., Kornbluh, R., Sommer-Larsen, P., Alici, G.: Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications? Bioinspir. Biomim. 6(4), 045006 (2011)

    Google Scholar 

  2. Carpi, F., Raspopovic, S., Frediani, G., De Rossi, D.: Real-time control of dielectric elastomer actuators via bioelectric and biomechanical signals. Polym. Int. 59(3), 422–429 (2009)

    Article  Google Scholar 

  3. Van Ham, R., Sugar, T.G., Vanderborght, B., Hollander, K.W., Lefeber, D.: Review of Actuators with Passive Adjustable Compliance/Controllable Stiffness for Robotic Applications. IEEE Robot. Autom. Mag., 81–94 (2009)

    Google Scholar 

  4. Bar-Cohen, Y.: Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges. SPIE Press (2001)

    Google Scholar 

  5. Meijer, K., Rosenthal, M.S., Full, R.J.: Muscle-like actuators? A comparison between three electroactive polymers. In: Proc. SPIE, vol. 4329, pp. 7–15 (2001)

    Google Scholar 

  6. Xie, S., Ramson, P., Graaf, D., Calius, E., Anderson, I.: An Adaptive Control System for Dielectric Elastomers. In: 2005 IEEE International Conference on Industrial Technology, pp. 335–340 (2005)

    Google Scholar 

  7. Pelrine, R., Kornbluh, R.D., Pei, Q., Stanford, S., Oh, S., Eckerle, J., Full, R.J., Rosenthal, M.A., Meijer, K.: Dielectric elastomer artificial muscle actuators: toward biomimetic motion. In: Proc. SPIE, vol. 4695, pp. 126–137 (2002)

    Google Scholar 

  8. OHalloran, A., OMalley, F., McHugh, P.: A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104(7), 071101 (2008)

    Google Scholar 

  9. Conn, A.T., Rossiter, J.: Towards holonomic electro-elastomer actuators with six degrees of freedom. Smart Mater. Struct. 21(3), 035012 (2012)

    Google Scholar 

  10. Ozsecen, M.Y., Mavroidis, C.: Nonlinear force control of dielectric electroactive polymer actuators. In: Proc. SPIE, vol. 7642(1) (2010)

    Google Scholar 

  11. Hao, L., Li, Z.: Modeling and adaptive inverse control of hysteresis and creep in ionic polymer metal composite actuators. Smart Mater. Struct. 19(2), 025014 (2010)

    Google Scholar 

  12. Dong, R., Tan, X.: Modeling and open-loop control of IPMC actuators under changing ambient temperature. Smart Mater. Struct. 21(6), 065014 (2012)

    Google Scholar 

  13. Brufau-Penella, J., Tsiakmakis, K., Laopoulos, T., Puig-Vidal, M.: Model reference adaptive control for an ionic polymer metal composite in underwater applications. Smart Mater. Struct. 17(4), 045020 (2008)

    Google Scholar 

  14. Yun, K., Kim, W.J.: Microscale position control of an electroactive polymer using an anti-windup scheme. Smart Mater. Struct. 15(4), 924–930 (2006)

    Article  Google Scholar 

  15. Sarban, R., Jones, R.W.: Physical model-based active vibration control using a dielectric elastomer actuator. J. Intel. Mat. Syst. Str. 23(4), 473–483 (2012)

    Article  Google Scholar 

  16. Widrow, B., Walach, E.: Adaptive Inverse Control A Signal Processing Approach. Reissue edn. John Wiley & Sons, Inc. (2008)

    Google Scholar 

  17. Dean, P., Porrill, J., Ekerot, C.F., Jörntell, H.: The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat. Rev. Neurosci. 11(1), 30–43 (2010)

    Article  Google Scholar 

  18. Porrill, J., Dean, P., Anderson, S. R.: Adaptive filters and internal models: Multilevel description of cerebellar function. Neural Networks (December 28, 2012), http://dx.doi.org/10.1016/j.neunet.2012.12.005

  19. Porrill, J., Dean, P.: Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems. Neural Computation 19(1), 170–193 (2007)

    Article  MATH  Google Scholar 

  20. Ito, M.: The Cerebellum and Neural Control New York, Raven (1984)

    Google Scholar 

  21. Fujita, M.: Adaptive Filter Model of the Cerebellum. Biol. Cybern. 206, 195–206 (1982)

    Article  Google Scholar 

  22. Lenz, A., Anderson, S.R., Pipe, A.G., Melhuish, C., Dean, P., Porrill, J.: Cerebellar-inspired adaptive control of a robot eye actuated by pneumatic artificial muscles. IEEE T. Syst. Man. Cy. B 39(6), 1420–1422 (2009)

    Article  Google Scholar 

  23. Miller III, W.T.: Real-Time Application of Neural Networks for Sensor-Based Control of Robots with Vision. IEEE T. Syst. Man. Cyb. 19(4), 825–831 (1989)

    Article  Google Scholar 

  24. Spoelstra, J., Arbib, A.A., Schweighofer, N.: Cerebellar adpative control of a biomimetic manipulator. Neurocomputing 26-27, 881–889 (1999)

    Google Scholar 

  25. Smagt, P.: van der: Cerebellar control of robot arms. Connection Science 10, 301–320 (1998)

    Article  Google Scholar 

  26. Dean, P., Porrill, J., Stone, J.V.: Decorrelation control by the cerebellum achieves oculomotor plant compensation in simulated vestibulo-ocular reflex. Proc. R. Soc. B 269(1503), 1895–1904 (2002)

    Article  Google Scholar 

  27. Anderson, S.R., Pearson, M.J., Pipe, A.G., Prescott, T.J., Dean, P., Porrill, J.: Adaptive Cancelation of Self-Generated Sensory Signals in a Whisking Robot. IEEE T. Robot. 26(6), 1065–1076 (2010)

    Article  Google Scholar 

  28. Ljung, L.: System Identification - Theory for the User, 2nd edn. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  29. Schweighofer, N., Doya, K., Lay, F.: Unsupervised Learning of Granule Cell Sparse Codes Enhances Cerebellar Adaptive Control. Neuroscience 103(1), 35–50 (2001)

    Article  Google Scholar 

  30. Coenen, O.J.D., Arnold, M.P., Sejnowski, T.J.: Parallel Fiber Coding in the Cerebellum for Life-Long Learning. Auton. Robot. 11, 291–297 (2001)

    Article  MATH  Google Scholar 

  31. Porrill, J., Dean, P.: Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems. Neural Comput. 19(1), 170–193 (2007)

    Article  MATH  Google Scholar 

  32. Sastry, S., Bodson, M.: Adaptive Control Stability, Convergence and Robustness. Prentice Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  33. Elliott, S.J., Nelson, P.A.: Active noise control. IEEE Signal Proc. Mag, 12–35 (1993)

    Google Scholar 

  34. Kelly, R.M., Strick, P.L.: Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. Journal of Neuroscience 23(23), 8432–8444 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wilson, E.D., Assaf, T., Pearson, M.J., Rossiter, J.M., Anderson, S.R., Porrill, J. (2013). Bioinspired Adaptive Control for Artificial Muscles. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2013. Lecture Notes in Computer Science(), vol 8064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39802-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39802-5_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39801-8

  • Online ISBN: 978-3-642-39802-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics