Skip to main content

Symbolic Techniques for Domain Decomposition Methods

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XX

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 91))

Abstract

Some algorithmic aspects of systems of PDEs based simulations can be better clarified by means of symbolic computation techniques. This is very important since numerical simulations heavily rely on solving systems of PDEs. For the large-scale problems we deal with in today’s standard applications, it is necessary to rely on iterative Krylov methods that are scalable (i.e., weakly dependent on the number of degrees on freedom and number of subdomains) and have limited memory requirements.

This work was supported by the PEPS Maths-ST2I SADDLES.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Achdou, P. Le Tallec, F. Nataf, and M. Vidrascu. A domain decomposition preconditioner for an advection-diffusion problem. Comput. Methods Appl. Mech. Engrg, 184:145–170, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Barucq, J. Diaz, and M. Tlemcani. New absorbing layers conditions for short water waves. Journal of Computational Physics, 229(1):58–72, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Chyzak, A. Quadrat, and D. Robertz. Effective algorithms for parametrizing linear control systems over Ore algebras. Appl. Algebra Engrg. Comm. Comput., 16:319–376, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Chyzak, A. Quadrat, and D. Robertz. OreModules: A symbolic package for the study of multidimensional linear systems. In Applications of Time-Delay Systems, volume 352 of LNCIS, pages 233–264. Springer, 2007.

    Google Scholar 

  5. T. Cluzeau, V. Dolean, F. Nataf, A. Quadrat, Symbolic methods for developing new domain decomposition algorithms, INRIA Tehnical Report RR-7953, 2012. http://hal.inria.fr/hal-00694468

  6. A. D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry, volume 185 of Graduate Texts in Mathematics. Springer, second edition, 2005.

    Google Scholar 

  7. V. Dolean and F. Nataf. A new domain decomposition method for the compressible Euler equations. M2AN Math. Model. Numer. Anal., 40(4):689–703, 2006.

    Google Scholar 

  8. V. Dolean, F. Nataf, and G. Rapin. Deriving a new domain decomposition method for the Stokes equations using the Smith factorization. Math. Comp., 78(266):789–814, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  9. Ch. Farhat and F.-X. Roux. A Method of Finite Element Tearing and Interconnecting and its Parallel Solution Algorithm. Internat. J. Numer. Methods Engrg., 32:1205–1227, 1991.

    Google Scholar 

  10. P. Gosselet and C. Rey. Non-overlapping domain decomposition methods in structural mechanics. Arch. Comput. Methods Engrg., 13(4):515–572, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Mandel. Balancing domain decomposition. Comm. on Applied Numerical Methods, 9:233–241, 1992.

    Article  MathSciNet  Google Scholar 

  12. F. Nataf. A new approach to perfectly matched layers for the linearized Euler system. J. Comput. Phys., 214(2):757–772, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  13. L.F. Pavarino and O.B. Widlund. Balancing Neumann-Neumann methods for incompressible Stokes equations. Comm. Pure Appl. Math., 55:302–335, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Pechstein and J. Schöberl. Tangential-displacement and normal-normal-stress continuous mixed finite elements for elasticity. Math. Models Methods Appl. Sci., 21(8):1761–1782, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  15. J.J. Rotman. An Introduction to Homological Algebra. Springer, second edition, 2009.

    Google Scholar 

  16. P. Le Tallec, J. Mandel, and M. Vidrascu. A Neumann-Neumann Domain Decomposition Algorithm for Solving Plate and Shell Problems. SIAM J. Numer. Anal., 35:836–867, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  17. J.T. Wloka, B. Rowley, and B. Lawruk. Boundary Value Problems for Elliptic Systems. Cambridge University Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Cluzeau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cluzeau, T., Dolean, V., Nataf, F., Quadrat, A. (2013). Symbolic Techniques for Domain Decomposition Methods. In: Bank, R., Holst, M., Widlund, O., Xu, J. (eds) Domain Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational Science and Engineering, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35275-1_3

Download citation

Publish with us

Policies and ethics