Skip to main content

Dense Affinity Propagation on Clusters of GPUs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7203))

Abstract

This article focuses on implementation of Affinity Propagation, a state of the art method for finding exemplars in sets of patterns, on clusters of Graphical Processing Units. When finding exemplars in dense, non-metric data Affinity Propagation has O(n 2) memory complexity. This limits the size of problems that can fit in the Graphical Processing Unit memory. We show, however, that dense Affinity Propagation can be distributed on multiple Graphical Processing Units with low communication-to-computation ratio. By exploiting this favorable communication pattern we propose an implementation which can find exemplars in large, dense data sets efficiently, even when run over slow interconnect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D., Luke, R., Keller, J.: Incorporation of non-euclidean distance metrics into fuzzy clustering on graphics processing units. In: Melin, P., Castillo, O., Ramrez, E., Kacprzyk, J., Pedrycz, W. (eds.) Analysis and Design of Intelligent Systems using Soft Computing Techniques. AISC, vol. 41, pp. 128–139. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Cao, F., Tung, A.K.H., Zhou, A.: Scalable Clustering Using Graphics Processors. In: Yu, J.X., Kitsuregawa, M., Leong, H.-V. (eds.) WAIM 2006. LNCS, vol. 4016, pp. 372–384. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Catanzaro, B.: OpenCL optimization case study: Simple reductions. White paper, AMD Developer Central (2010), http://developer.amd.com/documentation/articles/Pages/OpenCL-Optimization-Case-Study-Simple-Reductions.aspx

  4. Charikar, M., Guha, S., Tardos, É., Shmoys, D.: A constant–factor approximation algorithm for the k–median problem. Journal of Computer and System Sciences 65(1), 129–149 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Frey, B., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hall, J., Hart, J.: GPU acceleration of iterative clustering. In: The ACM Workshop on General Purpose Computing on Graphics Processors. Manuscript Accompanying Poster at GP2 (2004)

    Google Scholar 

  7. Hussein, M., Abd-Almageed, W.: Efficient band approximation of gram matrices for large scale kernel methods on GPUs. In: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, SC 2009. ACM, New York (2009)

    Google Scholar 

  8. Ma, W., Agrawal, G.: A translation system for enabling data mining applications on GPUs. In: Proceedings of the 23rd International Conference on Supercomputing, pp. 400–409. ACM (2009)

    Google Scholar 

  9. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press, Berkeley (1967)

    Google Scholar 

  10. Message Passing Interface Forum: MPI: A message passing interface standard (1995)

    Google Scholar 

  11. Pevsner, J.: Bioinformatics and functional genomics. Wiley-Blackwell (2009)

    Google Scholar 

  12. Shalom, S.A.A., Dash, M., Tue, M.: Efficient K-Means Clustering Using Accelerated Graphics Processors. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 166–175. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Takizawa, H., Kobayashi, H.: Hierarchical parallel processing of large scale data clustering on a PC cluster with GPU co-processing. The Journal of Supercomputing 36, 219–234 (2006)

    Article  Google Scholar 

  14. Wu, R., Zhang, B., Hsu, M.: Clustering billions of data points using GPUs. In: Proceedings of the Combined Workshops on UnConventional High Performance Computing Workshop Plus Memory Access Workshop, pp. 1–6. ACM (2009)

    Google Scholar 

  15. Zhang, Q., Zhang, Y.: Hierarchical clustering of gene expression profiles with graphics hardware acceleration. Pattern Recognition Letters 27(6), 676–681 (2006)

    Article  Google Scholar 

  16. Zhang, Y., Mueller, F., Cui, X., Potok, T.: Large-scale multi-dimensional document clustering on GPU clusters. In: 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS), pp. 1–10. IEEE (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kurdziel, M., Boryczko, K. (2012). Dense Affinity Propagation on Clusters of GPUs. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2011. Lecture Notes in Computer Science, vol 7203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31464-3_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31464-3_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31463-6

  • Online ISBN: 978-3-642-31464-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics