Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 369))

Abstract

After infection of a cell, the positive-strand RNA genome of Hepatitis C Virus (HCV) directly serves as the template for translation in the cytosol. By the use of an internal ribosome entry site (IRES) element in the 5′-untranslated region (5′-UTR) of the viral RNA, the HCV RNA bypasses the need for nuclear processing events like capping and directly recruits the translation apparatus to the viral RNA to start translation of the viral proteins. In this review, I discuss the structure and function of the HCV IRES, focusing on (1) the recruitment of the cellular translation machinery to the IRES, including canonical and noncanonical translation initiation factors, (2) noncanonical RNA-binding proteins that modulate IRES activity, and (3) microRNAs that have an influence on the efficiency of HCV RNA translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HCV:

Hepatitis C Virus

IRES:

Internal ribosome entry site

UTR:

Untranslated region

eIF:

Eukaryotic initiation factor

ITAF:

IRES trans-acting factor

NSAP1:

NS1-associated protein 1

hnRNP:

Heterogeneous nuclear ribonucleoprotein

LSm:

Like Sm

PTB:

Polypyrimidine tract-binding protein

miRNA:

microRNA

miR-122:

microRNA-122

Ago:

Argonaute

References

  • Ali N, Pruijn GJ, Kenan DJ, Keene JD, Siddiqui A (2000) Human La antigen is required for the hepatitis C virus internal ribosome entry site-mediated translation. J Biol Chem 275(36):27531–27540

    CAS  PubMed  Google Scholar 

  • Ali N, Siddiqui A (1997) The La antigen binds 5’ noncoding region of the hepatitis C virus RNA in the context of the initiator AUG codon and stimulates internal ribosome entry site-mediated translation. Proc Natl Acad Sci USA 94(6):2249–2254

    CAS  PubMed  Google Scholar 

  • Anwar A, Ali N, Tanveer R, Siddiqui A (2000) Demonstration of functional requirement of polypyrimidine tract-binding protein by SELEX RNA during hepatitis C virus internal ribosome entry site-mediated translation initiation. J Biol Chem 275(44):34231–34235

    CAS  PubMed  Google Scholar 

  • Auweter SD, Allain FH (2008) Structure-function relationships of the polypyrimidine tract binding protein. Cell Mol Life Sci 65(4):516–527

    CAS  PubMed  Google Scholar 

  • Azzouz TN, Pillai RS, Dapp C, Chari A, Meister G, Kambach C, Fischer U, Schumperli D (2005) Toward an assembly line for U7 snRNPs: interactions of U7-specific Lsm proteins with PRMT5 and SMN complexes. J Biol Chem 280(41):34435–34440

    CAS  PubMed  Google Scholar 

  • Babaylova E, Graifer D, Malygin A, Stahl J, Shatsky I, Karpova G (2009) Positioning of subdomain IIId and apical loop of domain II of the hepatitis C IRES on the human 40S ribosome. Nucleic Acids Res 37(4):1141–1151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baril M, Brakier-Gingras L (2005) Translation of the F protein of hepatitis C virus is initiated at a non-AUG codon in a +1 reading frame relative to the polyprotein. Nucleic Acids Res 33(5):1474–1486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bedard KM, Walter BL, Semler BL (2004) Multimerization of poly(rC) binding protein 2 is required for translation initiation mediated by a viral IRES. RNA 10(8):1266–1276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berezhna SY, Supekova L, Sever MJ, Schultz PG, Deniz AA (2011) Dual regulation of hepatitis C viral RNA by cellular RNAi requires partitioning of Ago2 to lipid droplets and P-bodies. RNA 17(10):1831–1845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berry KE, Waghray S, Mortimer SA, Bai Y, Doudna JA (2011) Crystal structure of the HCV IRES central domain reveals strategy for start-codon positioning. Struct 19(10):1456–1466

    CAS  Google Scholar 

  • Boehringer D, Thermann R, Ostareck-Lederer A, Lewis JD, Stark H (2005) Structure of the hepatitis C Virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES. Struct 13(11):1695–1706

    CAS  Google Scholar 

  • Boulant S, Becchi M, Penin F, Lavergne JP (2003) Unusual multiple recoding events leading to alternative forms of hepatitis C virus core protein from genotype 1b. J Biol Chem 278(46):45785–45792

    CAS  PubMed  Google Scholar 

  • Boumlic A, Vassilaki N, Dalagiorgou G, Kochlios E, Kakkanas A, Georgopoulou U, Markoulatos P, Orfanoudakis G, Mavromara P (2011) Internal translation initiation stimulates expression of the ARF/core + 1 open reading frame of HCV genotype 1b. Virus Res 155(1):213–220

    CAS  PubMed  Google Scholar 

  • Bradrick SS, Walters RW, Gromeier M (2006) The hepatitis C virus 3’-untranslated region or a poly(A) tract promote efficient translation subsequent to the initiation phase. Nucleic Acids Res 34(4):1293–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brocard M, Paulous S, Komarova AV, Deveaux V, Kean KM (2007) Evidence that PTB does not stimulate HCV IRES-driven translation. Virus Genes 35(1):5–15

    CAS  PubMed  Google Scholar 

  • Brown EA, Zhang H, Ping LH, Lemon SM (1992) Secondary structure of the 5’ nontranslated regions of hepatitis C virus and pestivirus genomic RNAs. Nucleic Acids Res 20(19):5041–5045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bung C, Bochkaeva Z, Terenin I, Zinovkin R, Shatsky IN, Niepmann M (2010) Influence of the hepatitis C virus 3’-untranslated region on IRES-dependent and cap-dependent translation initiation. FEBS Lett 584(4):837–842

    CAS  PubMed  Google Scholar 

  • Buratti E, Tisminetzky S, Zotti M, Baralle FE (1998) Functional analysis of the interaction between HCV 5’UTR and putative subunits of eukaryotic translation initiation factor eIF3. Nucleic Acids Res 26(13):3179–3187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan EK, Sullivan KF, Fox RI, Tan EM (1989) Sjogren’s syndrome nuclear antigen B (La): cDNA cloning, structural domains, and autoepitopes. J Autoimmun 2(4):321–327

    CAS  PubMed  Google Scholar 

  • Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA, Xu C, Mason WS, Moloshok T, Bort R, Zaret KS, Taylor JM (2004) miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 1(2):106–113

    CAS  PubMed  Google Scholar 

  • Chen HH, Chang JG, Lu RM, Peng TY, Tarn WY (2008) The RNA binding protein hnRNP Q modulates the utilization of exon 7 in the survival motor neuron 2 (SMN2) gene. Mol Cell Biol 28(22):6929–6938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SK, Lee JH, Zoll WL, Merrick WC, Dever TE (1998) Promotion of met-tRNAiMet binding to ribosomes by yIF2, a bacterial IF2 homolog in yeast. Science 280(5370):1757–1760

    CAS  PubMed  Google Scholar 

  • Costa-Mattioli M, Svitkin Y, Sonenberg N (2004) La autoantigen is necessary for optimal function of the poliovirus and hepatitis C virus internal ribosome entry site in vivo and in vitro. Mol Cell Biol 24(15):6861–6870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Craig AW, Svitkin YV, Lee HS, Belsham GJ, Sonenberg N (1997) The La autoantigen contains a dimerization domain that is essential for enhancing translation. Mol Cell Biol 17(1):163–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Toledano R, Ariza-Mateos A, Birk A, Martinez-Garcia B, Gomez J (2009) In vitro characterization of a miR-122-sensitive double-helical switch element in the 5’ region of hepatitis C virus RNA. Nucleic Acids Res 37(16):5498–5510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dmitriev SE, Terenin IM, Andreev DE, Ivanov PA, Dunaevsky JE, Merrick WC, Shatsky IN (2010) GTP-independent tRNA delivery to the ribosomal P-site by a novel eukaryotic translation factor. J Biol Chem 285(35):26779–26787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    CAS  PubMed  Google Scholar 

  • Fang JW, Moyer RW (2000) The effects of the conserved extreme 3’ end sequence of hepatitis C virus (HCV) RNA on the in vitro stabilization and translation of the HCV RNA genome. J Hepatol 33(4):632–639

    CAS  PubMed  Google Scholar 

  • Fehr C, Conrad DK, Niepmann M (2012) Differential stimulation of hepatitis C Virus RNA translation by microRNA-122 in different cell cycle phases. Cell Cycle 11(2):277–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Filbin ME, Kieft JS (2011) HCV IRES domain IIb affects the configuration of coding RNA in the 40S subunit’s decoding groove. RNA 17(7):1258–1273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fontanes V, Raychaudhuri S, Dasgupta A (2009) A cell-permeable peptide inhibits hepatitis C virus replication by sequestering IRES transacting factors. Virology 394(1):82–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friebe P, Lohmann V, Krieger N, Bartenschlager R (2001) Sequences in the 5’ nontranslated region of hepatitis C virus required for RNA replication. J Virol 75(24):12047–12057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu H, Tie Y, Xu C, Zhang Z, Zhu J, Shi Y, Jiang H, Sun Z, Zheng X (2005) Identification of human fetal liver miRNAs by a novel method. FEBS Lett 579(17):3849–3854

    CAS  PubMed  Google Scholar 

  • Goergen D, Niepmann M (2012) Stimulation of hepatitis C Virus RNA translation by microRNA-122 occurs under different conditions in vivo and in vitro. Virus Res 167(2):343–352

    CAS  PubMed  Google Scholar 

  • Gosert R, Chang KH, Rijnbrand R, Yi M, Sangar DV, Lemon SM (2000) Transient expression of cellular polypyrimidine-tract binding protein stimulates cap-independent translation directed by both picornaviral and flaviviral internal ribosome entry sites in vivo. Mol Cell Biol 20(5):1583–1595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goss DJ, Harrigan T (1986) Magnesium ion dependent equilibria, kinetics, and thermodynamic parameters of Artemia ribosome dissociation and subunit association. Biochemistry 25(12):3690–3695

    CAS  PubMed  Google Scholar 

  • Gratacos FM, Brewer G (2010) The role of AUF1 in regulated mRNA decay. Wiley interdisciplinary reviews RNA 1(3):457–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gubitz AK, Feng W, Dreyfuss G (2004) The SMN complex. Exp Cell Res 296(1):51–56

    CAS  PubMed  Google Scholar 

  • Günther T (2006) Concentration, compartmentation and metabolic function of intracellular free Mg2+. Magn Res 19(4):225–236

    Google Scholar 

  • Hahm B, Kim YK, Kim JH, Kim TY, Jang SK (1998) Heterogeneous nuclear ribonucleoprotein L interacts with the 3’ border of the internal ribosomal entry site of hepatitis C virus. J Virol 72(11):8782–8788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henke JI, Goergen D, Zheng J, Song Y, Schüttler CG, Fehr C, Jünemann C, Niepmann M (2008) microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J 27(24):3300–3310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Honda M, Beard MR, Ping LH, Lemon SM (1999a) A phylogenetically conserved stem-loop structure at the 5’ border of the internal ribosome entry site of hepatitis C virus is required for cap-independent viral translation. J Virol 73(2):1165–1174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Honda M, Rijnbrand R, Abell G, Kim D, Lemon SM (1999b) Natural variation in translational activities of the 5’ nontranslated RNAs of hepatitis C virus genotypes 1a and 1b: evidence for a long-range RNA–RNA interaction outside of the internal ribosomal entry site. J Virol 73(6):4941–4951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hung LH, Heiner M, Hui J, Schreiner S, Benes V, Bindereif A (2008) Diverse roles of hnRNP L in mammalian mRNA processing: a combined microarray and RNAi analysis. RNA 14(2):284–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang B, Lim JH, Hahm B, Jang SK, Lee SW (2009) hnRNP L is required for the translation mediated by HCV IRES. Biochem Biophys Res Commun 378(3):584–588

    CAS  PubMed  Google Scholar 

  • Isken O, Baroth M, Grassmann CW, Weinlich S, Ostareck DH, Ostareck-Lederer A, Behrens SE (2007) Nuclear factors are involved in hepatitis C virus RNA replication. RNA 13(10):1675–1692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isken O, Grassmann CW, Sarisky RT, Kann M, Zhang S, Grosse F, Kao PN, Behrens SE (2003) Members of the NF90/NFAR protein group are involved in the life cycle of a positive-strand RNA virus. EMBO J 22(21):5655–5665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito T, Tahara SM, Lai MM (1998) The 3’-untranslated region of hepatitis C virus RNA enhances translation from an internal ribosomal entry site. J Virol 72(11):8789–8796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Izumi RE, Das S, Barat B, Raychaudhuri S, Dasgupta A (2004) A peptide from autoantigen La blocks poliovirus and hepatitis C virus cap-independent translation and reveals a single tyrosine critical for La RNA binding and translation stimulation. J Virol 78(7):3763–3776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11(2):113–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jangra RK, Yi M, Lemon SM (2010) Regulation of hepatitis C virus translation and infectious virus production by the microRNA miR-122. J Virol 84(13):6615–6625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji H, Fraser CS, Yu Y, Leary J, Doudna JA (2004) Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA. Proc Natl Acad Sci USA 101(49):16990–16995

    CAS  PubMed  Google Scholar 

  • Jinek M, Doudna JA (2009) A three-dimensional view of the molecular machinery of RNA interference. Nature 457(7228):405–412

    CAS  PubMed  Google Scholar 

  • Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309(5740):1577–1581

    CAS  PubMed  Google Scholar 

  • Jünemann C, Song Y, Bassili G, Goergen D, Henke J, Niepmann M (2007) Picornavirus internal ribosome entry site elements can stimulate translation of upstream genes. J Biol Chem 282(1):132–141

    PubMed  Google Scholar 

  • Kajita Y, Nakayama J, Aizawa M, Ishikawa F (1995) The UUAG-specific RNA binding protein, heterogeneous nuclear ribonucleoprotein D0. Common modular structure and binding properties of the 2xRBD-Gly family. J Biol Chem 270(38):22167–22175

    CAS  PubMed  Google Scholar 

  • Kenan DJ, Query CC, Keene JD (1991) RNA recognition: towards identifying determinants of specificity. Trends Biochem Sci 16(6):214–220

    CAS  PubMed  Google Scholar 

  • Khusial P, Plaag R, Zieve GW (2005) LSm proteins form heptameric rings that bind to RNA via repeating motifs. Trends Biochem Sci 30(9):522–528

    CAS  PubMed  Google Scholar 

  • Kieft JS, Zhou K, Grech A, Jubin R, Doudna JA (2002) Crystal structure of an RNA tertiary domain essential to HCV IRES- mediated translation initiation. Nat Struct Biol 9(5):370–374

    CAS  PubMed  Google Scholar 

  • Kieft JS, Zhou K, Jubin R, Doudna JA (2001) Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA 7(2):194–206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Hahm B, Kim YK, Choi M, Jang SK (2000) Protein-protein interaction among hnRNPs shuttling between nucleus and cytoplasm. J Mol Biol 298(3):395–405

    CAS  PubMed  Google Scholar 

  • Kim JH, Paek KY, Ha SH, Cho S, Choi K, Kim CS, Ryu SH, Jang SK (2004) A cellular RNA-binding protein enhances internal ribosomal entry site-dependent translation through an interaction downstream of the hepatitis C virus polyprotein initiation codon. Mol Cell Biol 24(18):7878–7890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Park SM, Park JH, Keum SJ, Jang SK (2011) eIF2A mediates translation of hepatitis C viral mRNA under stress conditions. EMBO J 30(12):2454–2464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YK, Lee SH, Kim CS, Seol SK, Jang SK (2003) Long-range RNA–RNA interaction between the 5’ nontranslated region and the core-coding sequences of hepatitis C virus modulates the IRES-dependent translation. RNA 9(5):599–606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolupaeva VG, Pestova TV, Hellen CU (2000) An enzymatic footprinting analysis of the interaction of 40S ribosomal subunits with the internal ribosomal entry site of hepatitis C virus. J Virol 74(14):6242–6250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739

    CAS  PubMed  Google Scholar 

  • Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foa R, Schliwka J, Fuchs U, Novosel A, Muller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S, Orum H (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327(5962):198–201

    CAS  PubMed  Google Scholar 

  • Lee KH, Woo KC, Kim DY, Kim TD, Shin J, Park SM, Jang SK, Kim KT (2012) Rhythmic interaction between Period1 mRNA and hnRNP Q leads to circadian time-dependent translation. Mol Cell Biol 32(3):717–728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Ridzon D, Wong L, Chen C (2007) Characterization of microRNA expression profiles in normal human tissues. BMC Genom 8:166

    Google Scholar 

  • Liu HM, Aizaki H, Choi KS, Machida K, Ou JJ, Lai MM (2009a) SYNCRIP (synaptotagmin-binding, cytoplasmic RNA-interacting protein) is a host factor involved in hepatitis C virus RNA replication. Virology 386(2):249–256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Wimmer E, Paul AV (2009b) Cis-acting RNA elements in human and animal plus-strand RNA viruses. Biochim Biophys Acta 1789(9–10):495–517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Locker N, Easton LE, Lukavsky PJ (2007) HCV and CSFV IRES domain II mediate eIF2 release during 80S ribosome assembly. EMBO J 26(3):795–805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Machlin ES, Sarnow P, Sagan SM (2011) Masking the 5’ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc Natl Acad Sci USA

    Google Scholar 

  • Makeyev AV, Liebhaber SA (2002) The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms. RNA 8(3):265–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maraia RJ, Lamichhane TN (2011) 3’ processing of eukaryotic precursor tRNAs. Wiley Interdisciplinary Rev RNA 2(3):362–375

    CAS  Google Scholar 

  • Martino L, Pennell S, Kelly G, Bui TT, Kotik-Kogan O, Smerdon SJ, Drake AF, Curry S, Conte MR (2012) Analysis of the interaction with the hepatitis C virus mRNA reveals an alternative mode of RNA recognition by the human La protein. Nucleic Acids Res 40(3):1381–1394

    CAS  PubMed  Google Scholar 

  • McMullan LK, Grakoui A, Evans MJ, Mihalik K, Puig M, Branch AD, Feinstone SM, Rice CM (2007) Evidence for a functional RNA element in the hepatitis C virus core gene. Proc Natl Acad Sci USA 104(8):2879–2884

    CAS  PubMed  Google Scholar 

  • Meerovitch K, Svitkin YV, Lee HS, Lejbkowicz F, Kenan DJ, Chan EK, Agol VI, Keene JD, Sonenberg N (1993) La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J Virol 67(7):3798–3807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monie TP, Hernandez H, Robinson CV, Simpson P, Matthews S, Curry S (2005) The polypyrimidine tract binding protein is a monomer. RNA 11(12):1803–1808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moraes KC, Quaresma AJ, Maehnss K, Kobarg J (2003) Identification and characterization of proteins that selectively interact with isoforms of the mRNA binding protein AUF1 (hnRNP D). Biol Chem 384(1):25–37

    CAS  PubMed  Google Scholar 

  • Mourelatos Z, Abel L, Yong J, Kataoka N, Dreyfuss G (2001) SMN interacts with a novel family of hnRNP and spliceosomal proteins. EMBO J 20(19):5443–5452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami K, Abe M, Kageyama T, Kamoshita N, Nomoto A (2001) Down-regulation of translation driven by hepatitis C virus internal ribosomal entry site by the 3’ untranslated region of RNA. Arch Virol 146(4):729–741

    CAS  PubMed  Google Scholar 

  • Murakami Y, Aly HH, Tajima A, Inoue I, Shimotohno K (2009) Regulation of the hepatitis C virus genome replication by miR-199a(*). J Hepatol 50(3):453–460

    CAS  PubMed  Google Scholar 

  • Nadal A, Martell M, Lytle JR, Lyons AJ, Robertson HD, Cabot B, Esteban JI, Esteban R, Guardia J, Gomez J (2002) Specific cleavage of hepatitis C virus RNA genome by human RNase P. J Biol Chem 277(34):30606–30613

    CAS  PubMed  Google Scholar 

  • Nagai K, Oubridge C, Ito N, Avis J, Evans P (1995) The RNP domain: a sequence-specific RNA-binding domain involved in processing and transport of RNA. Trends Biochem Sci 20(6):235–240

    CAS  PubMed  Google Scholar 

  • Nasheri N, Singaravelu R, Goodmurphy M, Lyn RK, Pezacki JP (2011) Competing roles of microRNA-122 recognition elements in hepatitis C virus RNA. Virology 410(2):336–344

    CAS  PubMed  Google Scholar 

  • Niepmann M (2009a) Activation of hepatitis C virus translation by a liver-specific microRNA. Cell Cycle 8(10):1473–1477

    CAS  PubMed  Google Scholar 

  • Niepmann M (2009b) Internal translation initiation of picornaviruses and hepatitis C virus. Biochim Biophys Acta 1789:529–541

    CAS  PubMed  Google Scholar 

  • Niepmann M, Zheng J (2006) Discontinuous native protein gel electrophoresis. Electrophoresis 27(20):3949–3951

    CAS  PubMed  Google Scholar 

  • Nishimura T, Saito M, Takano T, Nomoto A, Kohara M, Tsukiyama-Kohara K (2008) Comparative aspects on the role of polypyrimidine tract-binding protein in internal initiation of hepatitis C virus and picornavirus RNAs. Comp Immunol Microbiol Infect Dis 31(5):435–448

    CAS  PubMed  Google Scholar 

  • Oh YL, Hahm B, Kim YK, Lee HK, Lee JW, Song O, Tsukiyama-Kohara K, Kohara M, Nomoto A, Jang SK (1998) Determination of functional domains in polypyrimidine-tract-binding protein. Biochem J 331(Pt 1):169–175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pacheco A, Lopez de Quinto S, Ramajo J, Fernandez N, Martinez-Salas E (2009) A novel role for Gemin5 in mRNA translation. Nucleic Acids Res 37(2):582–590

    CAS  PubMed  Google Scholar 

  • Paek KY, Kim CS, Park SM, Kim JH, Jang SK (2008) RNA-binding protein hnRNP D modulates internal ribosome entry site-dependent translation of hepatitis C virus RNA. J Virol 82(24):12082–12093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park HG, Yoon JY, Choi M (2007) Heterogeneous nuclear ribonucleoprotein D/AUF1 interacts with heterogeneous nuclear ribonucleoprotein L. J Biosci 32(7):1263–1272

    CAS  PubMed  Google Scholar 

  • Park SM, Paek KY, Hong KY, Jang CJ, Cho S, Park JH, Kim JH, Jan E, Jang SK (2011) Translation-competent 48S complex formation on HCV IRES requires the RNA-binding protein NSAP1. Nucleic Acids Res 39(17):7791–7802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez I, McAfee JG, Patton JG (1997) Multiple RRMs contribute to RNA binding specificity and affinity for polypyrimidine tract binding protein. Biochemistry 36(39):11881–11890

    CAS  PubMed  Google Scholar 

  • Pestova TV, de Breyne S, Pisarev AV, Abaeva IS, Hellen CU (2008) eIF2-dependent and eIF2-independent modes of initiation on the CSFV IRES: a common role of domain II. EMBO J 27(7):1060–1072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pestova TV, Shatsky IN, Fletcher SP, Jackson RJ, Hellen CU (1998) A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev 12(1):67–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pietschmann T (2009) Regulation of hepatitis C virus replication by microRNAs. J Hepatol 50(3):441–444

    CAS  PubMed  Google Scholar 

  • Poenisch M, Bartenschlager R (2010) New insights into structure and replication of the hepatitis C virus and clinical implications. Semin Liver Dis 30(4):333–347

    CAS  PubMed  Google Scholar 

  • Pudi R, Srinivasan P, Das S (2004) La protein binding at the GCAC site near the initiator AUG facilitates the ribosomal assembly on the hepatitis C virus RNA to influence internal ribosome entry site-mediated translation. J Biol Chem 279(29):29879–29888

    CAS  PubMed  Google Scholar 

  • Randall G, Panis M, Cooper JD, Tellinghuisen TL, Sukhodolets KE, Pfeffer S, Landthaler M, Landgraf P, Kan S, Lindenbach BD, Chien M, Weir DB, Russo JJ, Ju J, Brownstein MJ, Sheridan R, Sander C, Zavolan M, Tuschl T, Rice CM (2007) Cellular cofactors affecting hepatitis C virus infection and replication. Proc Natl Acad Sci USA 104(31):12884–12889

    CAS  PubMed  Google Scholar 

  • Reineke LC, Cao Y, Baus D, Hossain NM, Merrick WC (2011) Insights into the role of yeast eIF2A in IRES-mediated translation. PLoS ONE 6(9):e24492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rijnbrand R, Bredenbeek P, van der Straaten T, Whetter L, Inchauspe G, Lemon S, Spaan W (1995) Almost the entire 5’ non-translated region of hepatitis C virus is required for cap-independent translation. FEBS Lett 365(2–3):115–119

    CAS  PubMed  Google Scholar 

  • Robert F, Kapp LD, Khan SN, Acker MG, Kolitz S, Kazemi S, Kaufman RJ, Merrick WC, Koromilas AE, Lorsch JR, Pelletier J (2006) Initiation of protein synthesis by hepatitis C virus is refractory to reduced eIF2.GTP.Met-tRNA(i)(Met) ternary complex availability. Mol Biol Cell 17(11):4632–4644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts AP, Lewis AP, Jopling CL (2011) miR-122 activates hepatitis C virus translation by a specialized mechanism requiring particular RNA components. Nucleic Acids Res 39(17):7716–7729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romero-Lopez C, Berzal-Herranz A (2012) The functional RNA domain 5BSL3.2 within the NS5B coding sequence influences hepatitis C virus IRES-mediated translation. Cell Mol Life Sci 69(1):103–113

    CAS  PubMed  Google Scholar 

  • Scheller N, Mina LB, Galao RP, Chari A, Gimenez-Barcons M, Noueiry A, Fischer U, Meyerhans A, Diez J (2009) Translation and replication of hepatitis C virus genomic RNA depends on ancient cellular proteins that control mRNA fates. Proc Natl Acad Sci USA 106(32):13517–13522

    CAS  PubMed  Google Scholar 

  • Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5(3):R13

    PubMed  PubMed Central  Google Scholar 

  • Shimakami T, Yamane D, Jangra RK, Kempf BJ, Spaniel C, Barton DJ, Lemon SM (2012a) Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex. Proc Natl Acad Sci USA 109:941–946

    CAS  PubMed  Google Scholar 

  • Shimakami T, Yamane D, Welsch C, Hensley L, Jangra RK, Lemon SM (2012b) Base Pairing between Hepatitis C Virus RNA and MicroRNA 122 3’ of Its Seed Sequence Is Essential for Genome Stabilization and Production of Infectious Virus. J Virol 86(13):7372–7383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siridechadilok B, Fraser CS, Hall RJ, Doudna JA, Nogales E (2005) Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science 310(5753):1513–1515

    CAS  PubMed  Google Scholar 

  • Sizova DV, Kolupaeva VG, Pestova TV, Shatsky IN, Hellen CU (1998) Specific interaction of eukaryotic translation initiation factor 3 with the 5’ nontranslated regions of hepatitis C virus and classical swine fever virus RNAs. J Virol 72(6):4775–4782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Friebe P, Tzima E, Jünemann C, Bartenschlager R, Niepmann M (2006) The hepatitis C virus RNA 3’-untranslated region strongly enhances translation directed by the internal ribosome entry site. J Virol 80(23):11579–11588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Tzima E, Ochs K, Bassili G, Trusheim H, Linder M, Preissner KT, Niepmann M (2005) Evidence for an RNA chaperone function of polypyrimidine tract-binding protein in picornavirus translation. RNA 11(12):1809–1824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spahn CM, Kieft JS, Grassucci RA, Penczek PA, Zhou K, Doudna JA, Frank J (2001) Hepatitis C virus IRES RNA-induced changes in the conformation of the 40 s ribosomal subunit. Science 291(5510):1959–1962

    CAS  PubMed  Google Scholar 

  • Terenin IM, Dmitriev SE, Andreev DE, Shatsky IN (2008) Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2. Nat Struct Mol Biol 15(8):836–841

    CAS  PubMed  Google Scholar 

  • Tischendorf JJ, Beger C, Korf M, Manns MP, Krüger M (2004) Polypyrimidine tract-binding protein (PTB) inhibits Hepatitis C virus internal ribosome entry site (HCV IRES)-mediated translation, but does not affect HCV replication. Arch Virol 149(10):1955–1970

    CAS  PubMed  Google Scholar 

  • Tsukiyama-Kohara K, Iizuka N, Kohara M, Nomoto A (1992) Internal ribosome entry site within hepatitis C virus RNA. J Virol 66(3):1476–1483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varaklioti A, Vassilaki N, Georgopoulou U, Mavromara P (2002) Alternate translation occurs within the core coding region of the hepatitis C viral genome. J Biol Chem 277(20):17713–17721

    CAS  PubMed  Google Scholar 

  • Vassilaki N, Boleti H, Mavromara P (2008a) Expression studies of the HCV-1a core + 1 open reading frame in mammalian cells. Virus Res 133(2):123–135

    CAS  PubMed  Google Scholar 

  • Vassilaki N, Friebe P, Meuleman P, Kallis S, Kaul A, Paranhos-Baccala G, Leroux-Roels G, Mavromara P, Bartenschlager R (2008b) Role of the hepatitis C virus core + 1 open reading frame and core cis-acting RNA elements in viral RNA translation and replication. J Virol 82(23):11503–11515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vassilaki N, Mavromara P (2003) Two alternative translation mechanisms are responsible for the expression of the HCV ARFP/F/core + 1 coding open reading frame. J Biol Chem 278(42):40503–40513

    CAS  PubMed  Google Scholar 

  • Vassilaki N, Mavromara P (2009) The HCV ARFP/F/core + 1 protein: production and functional analysis of an unconventional viral product. IUBMB Life 61(7):739–752

    CAS  PubMed  Google Scholar 

  • Villanueva RA, Jangra RK, Yi M, Pyles R, Bourne N, Lemon SM (2010) miR-122 does not modulate the elongation phase of hepatitis C virus RNA synthesis in isolated replicase complexes. Antiviral Res 88(1):119–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walewski JL, Keller TR, Stump DD, Branch AD (2001) Evidence for a new hepatitis C virus antigen encoded in an overlapping reading frame. RNA 7(5):710–721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Le SY, Ali N, Siddiqui A (1995) An RNA pseudoknot is an essential structural element of the internal ribosome entry site located within the hepatitis C virus 5’ noncoding region. RNA 1(5):526–537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Sarnow P, Siddiqui A (1993) Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. J Virol 67(6):3338–3344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Jeng KS, Lai MM (2011) Poly(C)-binding protein 2 interacts with sequences required for viral replication in the hepatitis C virus (HCV) 5’ untranslated region and directs HCV RNA replication through circularizing the viral genome. J Virol 85(16):7954–7964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang TH, Rijnbrand RC, Lemon SM (2000) Core protein-coding sequence, but not core protein, modulates the efficiency of cap-independent translation directed by the internal ribosome entry site of hepatitis C virus. J Virol 74(23):11347–11358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinlich S, Hüttelmaier S, Schierhorn A, Behrens SE, Ostareck-Lederer A, Ostareck DH (2009) IGF2BP1 enhances HCV IRES-mediated translation initiation via the 3’UTR. RNA 15(8):1528–1542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson JA, Zhang C, Huys A, Richardson CD (2011) Human Ago2 is required for efficient microRNA 122 regulation of hepatitis C virus RNA accumulation and translation. J Virol 85(5):2342–2350

    CAS  PubMed  Google Scholar 

  • Xu Z, Choi J, Yen TS, Lu W, Strohecker A, Govindarajan S, Chien D, Selby MJ, Ou J (2001) Synthesis of a novel hepatitis C virus protein by ribosomal frameshift. The EMBO journal 20(14):3840–3848

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue Y, Zhou Y, Wu T, Zhu T, Ji X, Kwon YS, Zhang C, Yeo G, Black DL, Sun H, Fu XD, Zhang Y (2009) Genome-wide analysis of PTB-RNA interactions reveals a strategy used by the general splicing repressor to modulate exon inclusion or skipping. Mol Cell 36(6):996–1006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yisraeli JK (2005) VICKZ proteins: a multi-talented family of regulatory RNA-binding proteins. Biol Cell 97(1):87–96

    CAS  PubMed  Google Scholar 

  • Zhang C, Huys A, Thibault PA, Wilson JA (2012) Requirements for human Dicer and TRBP in microRNA-122 regulation of HCV translation and RNA abundance. Virology 433(2):479–488

    CAS  PubMed  Google Scholar 

  • Zhao WD, Wimmer E (2001) Genetic analysis of a poliovirus/hepatitis C virus chimera: new structure for domain II of the internal ribosomal entry site of hepatitis C virus. J Virol 75(8):3719–3730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zoll WL, Horton LE, Komar AA, Hensold JO, Merrick WC (2002) Characterization of mammalian eIF2A and identification of the yeast homolog. J Biol Chem 277(40):37079–37087

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I apologize to those investigators whose work has not been discussed due to space limitations. I would like to thank Eva Nogales and Christian Spahn for providing images, Sung Key Jang, Ivan Shatsky, and Niki Vassilaki for valuable discussions, and Carmen Fehr and Dominik Conrad for reading the manuscript. Work in the author’s lab is supported by grants of the Deutsche Forschungsgemeinschaft, DFG (IRTG 1384, Ni 604/2-2, SFB 1021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Niepmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Niepmann, M. (2013). Hepatitis C Virus RNA Translation. In: Bartenschlager, R. (eds) Hepatitis C Virus: From Molecular Virology to Antiviral Therapy. Current Topics in Microbiology and Immunology, vol 369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27340-7_6

Download citation

Publish with us

Policies and ethics