Skip to main content

Model Checking of Transition-Labeled Finite-State Machines

  • Conference paper
Book cover Software Engineering, Business Continuity, and Education (ASEA 2011)

Abstract

We show that recent Model-driven Engineering that uses sequential finite state models in combination with a common sense logic is subject to efficient model checking. To achieve this, we first provide a formal semantics of the models. Using this semantics and methods for modeling sequential programs we obtain small Kripke structures. When considering the logics, we need to extend this to handle external variables and the possibilities of those variables been affected at any time during the execution of the sequential finite state machine. Thus, we extend the construction of the Kripke structure to this case. As a proof of concept, we use a classical example of modeling a microwave behavior and producing the corresponding software directly from models. The construction of the Kripke structure has been implemented using flex, bison and C++, and properties are verified using NuSMV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Billington, D.: The Proof Algorithms of Plausible Logic form a Hierarchy. In: Zhang, S., Jarvis, R. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp. 796–799. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Non-monotonic reasoning for requirements engineering. In: Proc. 5th Int. Conference on Evaluation of Novel Approaches to Software Engineering (ENASE), Athens, Greece, July 22-24, pp. 68–77. SciTePress — Science and Technology Publications, Portugal (2010)

    Google Scholar 

  3. Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Modelling Behaviour Requirements for Automatic Interpretation, Simulation and Deployment. In: Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472, pp. 204–216. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Billington, D., Rock, A.: Propositional plausible logic: Introduction and implementation. Studia Logica 67, 243–269 (2001) ISSN 1572-8730

    Article  MathSciNet  MATH  Google Scholar 

  5. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model checker. Int. J. on Software Tools for Technology Transfer 2 (2000)

    Google Scholar 

  6. Clarke, E.M., Emerson, E.A.: Design and Synthesis of Synchronization Skeletons using Branching Time Temporal Logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

    Chapter  Google Scholar 

  7. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (2001)

    Google Scholar 

  8. Dromey, R.G., Powell, D.: Early requirements defect detection. TickIT Journal 4Q05, 3–13 (2005)

    Google Scholar 

  9. Estivill-Castro, V., Hexel, R.: Module interactions for model-driven engineering of complex behavior of autonomous robots. In: Dini, P. (ed.) ICSEA 6th Int. Conf. on Software Engineering Advances, Barcelona. IEEE (to appear, October 2011)

    Google Scholar 

  10. Manna, Z., Pnueli, A.: Temporal verification of reactive systems:Safety. Springer, Heidelberg (1995)

    Book  Google Scholar 

  11. Mellor, S.J., Balcer, M.: Executable UML: A foundation for model-driven architecture. Addison-Wesley Publishing Co., Reading (2002)

    Google Scholar 

  12. Rock, A., Billington, D.: An implementation of propositional plausible logic. In: 23rd Australasian Computer Science Conference (ACSC 2000), January 31-February 3, pp. 204–210. IEEE Computer Society (2000)

    Google Scholar 

  13. Rock, A.: The DPL (decisive Plausible Logic) tool. Technical report (continually) (in preparation), www.cit.gu.edu.au/~arock/

  14. Rumbaugh, J., Blaha, M.R., Lorensen, W., Eddy, F., Premerlani, W.: Object-Oriented Modelling and Design. Prentice-Hall, Inc., Englewood Cliffs (1991)

    MATH  Google Scholar 

  15. Schmidt, D.C.: Model-driven engineering. IEEE Computer 39(2) (2006)

    Google Scholar 

  16. Shlaer, S., Mellor, S.J.: Object lifecycles: modeling the world in states. Yourdon Press, Englewood Cliffs (1992)

    MATH  Google Scholar 

  17. Wagner, F., Schmuki, R., Wagner, T., Wolstenholme, P.: Modeling Software with Finite State Machines: A Practical Approach. CRC Press, NY (2006)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Estivill-Castro, V., Rosenblueth, D.A. (2011). Model Checking of Transition-Labeled Finite-State Machines. In: Kim, Th., et al. Software Engineering, Business Continuity, and Education. ASEA 2011. Communications in Computer and Information Science, vol 257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27207-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27207-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27206-6

  • Online ISBN: 978-3-642-27207-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics