Skip to main content

Quantum Chemical Studies of Recurrent Interactions in RNA 3D Motifs

  • Chapter
  • First Online:
  • 1630 Accesses

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 27))

Abstract

High-quality quantum mechanical (QM) calculations provide physically based descriptions of molecular systems that are free of empirical parameters. This contrasts with force-field computations based on simple and entirely nonphysical, analytical functions that must be completely parametrized for a given purpose. The costs of high-quality QM computations, however, can be enormous, limiting them to small model systems with ~50+ atoms. Thus, a major challenge of the QM approach is how to extrapolate data computed on model systems to intact biomolecules of biological interest. QM calculations have been used to study the basic molecular forces in nucleic acids. A notable accomplishment of these studies has been to clarify the nature of aromatic base stacking. Another important application of modern QM computations is to furnish reference data for parametrizing molecular modeling force fields. In this chapter, we provide a summary of the nature of QM calculations, their strengths, limitations, and relation to other methods. Then, we review the use of high-level ab initio (first principles) QM methods to calculate geometries and energies of fundamental nucleotide interactions in RNA 3D structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abu Almakarem AS, Petrov AI, Stombaugh J, Zirbel CL, Leontis NB (2011) Comprehensive survey and geometric classification of base triples in RNA structures. Nucleic Acids Res. doi:10.1093/nar/gkr810

  • Banas P, Jurecka P, Walter NG, Sponer J, Otyepka M (2009) Theoretical studies of RNA catalysis: hybrid QM/MM methods and their comparison with MD and QM. Methods 49:202–216. doi:10.1016/j.ymeth.2009.04.007

    Article  PubMed  CAS  Google Scholar 

  • Banas P, Hollas D, Zgarbova M, Jurecka P, Orozco M, Cheatham TE, Sponer J, Otyepka M (2010) Performance of molecular mechanics force fields for RNA simulations: stability of UUCG and GNRA hairpins. J Chem Theory Comput 6:3836–3849. doi:10.1021/ct100481h

    Article  CAS  Google Scholar 

  • Blas JR, Luque FJ, Orozco M (2004) Unique tautomeric properties of isoguanine. J Am Chem Soc 126:154–164

    Article  PubMed  CAS  Google Scholar 

  • Brandl M, Meyer M, Suhnel J (2000) Water-mediated base pairs in RNA: a quantum-chemical study. J Phys Chem A 104:11177–11187. doi:10.1021/jp002022d

    Article  CAS  Google Scholar 

  • Brandl M, Meyer M, Suhnel J (2001) Quantum-chemical analysis of C-H center dot center dot center dot O and C-H center dot center dot center dot N interactions in RNA base pairs – H-bond versus anti-H-bond pattern. J Biomol Struct Dyn 18:545–555

    Article  PubMed  CAS  Google Scholar 

  • Bugg CE, Thomas JM, Rao ST, Sundaral M (1971) Stereochemistry of nucleic acids and their constituents. 10. Solid-state base-stacking patterns in nucleic acid constituents and polynucleotides. Biopolymers 10:175–219

    Article  PubMed  CAS  Google Scholar 

  • Cieplak P, Cornell WD, Bayly C, Kollman PA (1995) Application of the multimolecule and multiconformational RESP methodology to biopolymers – charge derivation for DNA, RNA, AND proteins. J Comput Chem 16:1357–1377

    Article  CAS  Google Scholar 

  • Cieplak P, Dupradeau FY, Duan Y, Wang JM (2009) Polarization effects in molecular mechanical force fields. J Phys Condens Matter 21:333102. doi:33310210.1088/0953-8984/21/33/333102

    Article  PubMed  Google Scholar 

  • Colominas C, Luque FJ, Orozco M (1996) Tautomerism and protonation of guanine and cytosine. Implications in the formation of hydrogen-bonded complexes. J Am Chem Soc 118:6811–6821

    Article  CAS  Google Scholar 

  • Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  • Dey M, Moritz F, Grotemeyer J, Schag EW (1994) Base-pair formation of free nucleobases and mononucleosides in the gas-phase. J Am Chem Soc 116:9211–9215

    Article  CAS  Google Scholar 

  • Ditzler MA, Otyepka M, Sponer J, Walter NG (2010) Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in. Acc Chem Res 43:40–47. doi:10.1021/ar900093g

    Article  PubMed  CAS  Google Scholar 

  • Dong F, Miller RE (2002) Vibrational transition moment angles in isolated biomolecules: a structural tool. Science 298:1227–1230

    Article  PubMed  CAS  Google Scholar 

  • Dudev T, Lim C (2003) Principles governing Mg, Ca, and Zn binding and selectivity in proteins. Chem Rev 103:773–787. doi:10.1021/cr020467n

    Article  PubMed  CAS  Google Scholar 

  • Dudev T, Lim C (2008) Metal binding affinity and selectivity in metalloproteins: insights from computational studies. Annu Rev Biophys 37:97–116. doi:10.1146/annurev.biophys.37.032807.125811

    Article  PubMed  CAS  Google Scholar 

  • Egli M, Gessner RV (1995) Stereoelectronic effects Of deoxyribose O4′ on DNA conformation. Proc Natl Acad Sci USA 92:180–184

    Article  PubMed  CAS  Google Scholar 

  • Ennifar E, Yusupov M, Walter P, Marquet R, Ehresmann B, Ehresmann C, Dumas P (1999) The crystal structure of the dimerization initiation site of genomic HIV-1 RNA reveals an extended duplex with two adenine bulges. Structure 7:1439–1449

    Article  CAS  Google Scholar 

  • Feyereisen MW, Feller D, Dixon DA (1996) Hydrogen bond energy of the water dimer. J Phys Chem 100:2993–2997

    Article  CAS  Google Scholar 

  • Florian J, Sponer J, Warshel A (1999) Thermodynamic parameters for stacking and hydrogen bonding of nucleic acid bases in aqueous solution: ab initio/Langevin dipoles study. J Phys Chem B 103:884–892

    Article  CAS  Google Scholar 

  • Grimme S (2011) Density functional theory with London dispersion corrections. Wiley Interdiscip Rev Comput Mol Sci 1:211–228. doi:10.1002/wcms.30

    Article  CAS  Google Scholar 

  • Hammond NB, Tolbert BS, Kierzek R, Turner DH, Kennedy SD (2010) RNA internal loops with tandem AG pairs: the structure of the 5′G(UG)U/3′U(GA)G loop can be dramatically different from others, including 5′A(AG)U/3′U(GA)A. Biochemistry 49:5817–5827. doi:10.1021/bi100332r

    Article  PubMed  CAS  Google Scholar 

  • Hanus M, Ryjacek F, Kabelac M, Kubar T, Bogdan TV, Trygubenko SA, Hobza P (2003) Correlated ab initio study of nucleic acid bases and their tautomers in the gas phase, in a microhydrated environment and in aqueous solution. Guanine: surprising stabilization of rare tautomers in aqueous solution. J Am Chem Soc 125:7678–7688. doi:10.1021/ja034245y

    Article  PubMed  CAS  Google Scholar 

  • Hobza P, Sponer J (1999) Structure, energetics, and dynamics of the nucleic acid base pairs: nonempirical ab initio calculations. Chem Rev 99:3247–3276

    Article  PubMed  CAS  Google Scholar 

  • Hobza P, Sponer J, Polasek M (1995) H-bonded and stacked 2nd-base pairs – cytosine dimer – an ab-initio 2nd-order Moller-Plesset study. J Am Chem Soc 117:792–798

    Article  CAS  Google Scholar 

  • Hobza P, Selzle HL, Schlag EW (1996) Potential energy surface for the benzene dimer. Results of ab initio CCSD(T) calculations show two nearly isoenergetic structures: T-shaped and parallel-displaced. J Phys Chem 100:18790–18794

    Article  CAS  Google Scholar 

  • Hobza P, Kabelac M, Sponer J, Mejzlik P, Vondrasek J (1997) Performance of empirical potentials (AMBER, CFF95, CVFF, CHARMM, OPLS, POLTEV), semiempirical quantum chemical methods (AM1, MNDO/M, PM3), and ab initio Hartree-Fock method for interaction of DNA bases: comparison with nonempirical beyond Hartree-Fock results. J Comput Chem 18:1136–1150

    Article  CAS  Google Scholar 

  • Hunter CA (1993) Sequence-dependent DNA-structure – the role of base stacking interactions. J Mol Biol 230:1025–1054

    Article  PubMed  CAS  Google Scholar 

  • Jurecka P, Sponer J, Hobza P (2004) Potential energy surface of the cytosine dimer: MP2 complete basis set limit interaction energies, CCSD(T) correction term, and comparison with the AMBER force field. J Phys Chem B 108:5466–5471. doi:10.1021/jp049956c

    Article  CAS  Google Scholar 

  • Jurecka P, Sponer J, Cerny J, Hobza P (2006) Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys Chem Chem Phys 8:1985–1993. doi:10.1039/b600027d

    Article  PubMed  CAS  Google Scholar 

  • Katz AK, Glusker JP, Beebe SA, Bock CW (1996) Calcium ion coordination: a comparison with that of beryllium, magnesium, and zinc. J Am Chem Soc 118:5752–5763

    Article  CAS  Google Scholar 

  • Klamt A, Mennucci B, Tomasi J, Barone V, Curutchet C, Orozco M, Luque FJ (2009) On the performance of continuum solvation methods. A comment on “Universal approaches to solvation modeling”. Acc Chem Res 42:489–492. doi:10.1021/ar800187p

    Article  PubMed  CAS  Google Scholar 

  • Koller AN, Bozilovic J, Engels JW, Gohlke H (2010) Aromatic N versus aromatic F: bioisosterism discovered in RNA base pairing interactions leads to a novel class of universal base analogs. Nucleic Acids Res 38:3133–3146

    Article  PubMed  CAS  Google Scholar 

  • Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897. doi:10.1021/ar000033j

    Article  PubMed  CAS  Google Scholar 

  • Kopitz H, Zivkovic A, Engels JW, Gohlke H (2008) Determinants of the unexpected stability of RNA fluorobenzene self pairs. ChemBioChem 9:2619–2622. doi:10.1002/cbic.200800461

    Article  PubMed  CAS  Google Scholar 

  • Kratochvil M, Engkvist O, Sponer J, Jungwirth P, Hobza P (1998) Uracil dimer: potential energy and free energy surfaces. Ab initio beyond Hartree-Fock and empirical potential studies. J Phys Chem A 102:6921–6926

    Article  CAS  Google Scholar 

  • Kratochvil M, Sponer J, Hobza P (2000) Global minimum of the adenine center dot center dot center dot thymine base pair corresponds neither to Watson-Crick nor to Hoogsteen structures. Molecular dynamic/quenching/AMBER and ab initio beyond Hartree-Fock studies. J Am Chem Soc 122:3495–3499

    Article  CAS  Google Scholar 

  • Leontis NB, Westhof E (2001) Geometric nomenclature and classification of RNA base pairs. RNA 7:499–512

    Article  PubMed  CAS  Google Scholar 

  • Leontis NB, Stombaugh J, Westhof E (2002) The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res 30:3497–3531

    Article  PubMed  CAS  Google Scholar 

  • Luisi B, Orozco M, Sponer J, Luque FJ, Shakked Z (1998) On the potential role of the amino nitrogen atom as a hydrogen bond acceptor in macromolecules. J Mol Biol 279:1123–1136

    Article  PubMed  CAS  Google Scholar 

  • Mathews DH, Turner DH (2006) Prediction of RNA secondary structure by free energy minimization. Curr Opin Struct Biol 16:270–278. doi:10.1016/j.sbi.2006.05.010

    Article  PubMed  CAS  Google Scholar 

  • Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  PubMed  CAS  Google Scholar 

  • Miller JL, Kollman PA (1996) Solvation free energies of the nucleic acid bases. J Phys Chem 100:8587–8594

    Article  CAS  Google Scholar 

  • Mladek A, Sharma P, Mitra A, Bhattacharyya D, Sponer J, Sponer JE (2009) Trans Hoogsteen/sugar edge base pairing in RNA. Structures, energies, and stabilities from quantum chemical calculations. J Phys Chem B 113:1743–1755. doi:10.1021/jp808357m

    Article  PubMed  CAS  Google Scholar 

  • Mladek A, Sponer JE, Jurecka P, Banas P, Otyepka M, Svozil D, Sponer J (2010) Conformational energies of DNA sugar-phosphate backbone: reference QM calculations and a comparison with density functional theory and molecular mechanics. J Chem Theory Comput 6:3817–3835. doi:10.1021/ct1004593

    Article  CAS  Google Scholar 

  • Mladek A, Sponer JE, Kulhanek P, Lu XJ, Olson WK, Sponer J (2012) Understanding the sequence preference of recurrent RNA building blocks using quantum chemistry: the intrastrand RNA dinucleotide platform. J Chem Theory Comput 8:335–347. doi:10.1021/ct200712b

    Google Scholar 

  • Mokdad A, Krasovska MV, Sponer J, Leontis NB (2006) Structural and evolutionary classification of G/U wobble basepairs in the ribosome. Nucleic Acids Res 34:1326–1341. doi:10.1093/nar/gkl025

    Article  PubMed  CAS  Google Scholar 

  • Morgado CA, Jurecka P, Svozil D, Hobza P, Sponer J (2009) Balance of attraction and repulsion in nucleic-acid base stacking: CCSD(T)/complete-basis-set-limit calculations on uracil dimer and a comparison with the force-field description. J Chem Theory Comput 5:1524–1544. doi:10.1021/ct9000125

    Article  CAS  Google Scholar 

  • Nir E, Kleinermanns K, de Vries MS (2000) Pairing of isolated nucleic-acid bases in the absence of the DNA backbone. Nature 408:949–951

    Article  PubMed  CAS  Google Scholar 

  • Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA (2001) RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc Natl Acad Sci USA 98:4899–4903

    Article  PubMed  CAS  Google Scholar 

  • Oliva R, Cavallo L, Tramontano A (2006) Accurate energies of hydrogen bonded nucleic acid base pairs and triplets in tRNA tertiary interactions. Nucleic Acids Res 34:865–879. doi:10.1093/nar/gkj491

    Article  PubMed  CAS  Google Scholar 

  • Oliva R, Tramontano A, Cavallo L (2007) Mg2+ binding and archaeosine modification stabilize the G15-C48 Levitt base pair in tRNAs. RNA 13:1427–1436. doi:10.1261/rna.574407

    Article  PubMed  CAS  Google Scholar 

  • Perez A, Sponer J, Jurecka P, Hobza P, Luque FJ, Orozco M (2005) Are the hydrogen bonds of RNA (A U) stronger than those of DNA (A T)? A quantum mechanics study. Chem Eur J 11:5062–5066. doi:10.1002/chem.200500255

    Article  PubMed  CAS  Google Scholar 

  • Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, Laughton CA, Orozco M (2007) Refinenement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys J 92:3817–3829. doi:10.1529/biophysj.106.097782

    Article  PubMed  CAS  Google Scholar 

  • Petrov AI, Zirbel CL, Leontis NB (2011a) WebFR3D–a server for finding, aligning and analyzing recurrent RNA 3D motifs. Nucleic Acids Res 39:W50–W55. doi:10.1093/nar/gkr249

    Article  PubMed  CAS  Google Scholar 

  • Petrov AS, Bowman JC, Harvey SC, Williams LD (2011b) Bidentate RNA-magnesium clamps: On the origin of the special role of magnesium in RNA folding. RNA 17:291–297. doi:10.1261/rna.2390311

    Article  PubMed  CAS  Google Scholar 

  • Prive G, Heinemann U, Chandrasegaran S, Kan L, Kopka M, Dickerson R (1987) Helix geometry, hydration, and G.A mismatch in a B-DNA decamer. Science 238:498–504. doi:10.1126/science.3310237

    Article  PubMed  CAS  Google Scholar 

  • Rappoport D, Crawford NRM, Furche F, Burke K (2009) Approximate density functionals: Which should I choose? In: Solomon EI, Scott RA, King RB (eds) Computational inorganic and bioinorganic chemistry. Wiley-VCH, New York, pp 159–172

    Google Scholar 

  • Razga F, Koca J, Sponer J, Leontis NB (2005) Hinge-like motions in RNA kink-turns: the role of the second A-minor motif and nominally unpaired bases. Biophys J 88:3466–3485. doi:10.1529/biophysj.104.054916

    Article  PubMed  CAS  Google Scholar 

  • Reblova K, Strelcova Z, Kulhanek P, Besscova I, Mathews DH, Van Nostrand K, Yildirim I, Turner DH, Sponer J (2010) An RNA molecular switch: intrinsic flexibility of 23S rRNA helices 40 and 68 5′-UAA/5′-GAN internal loops studied by molecular dynamics methods. J Chem Theory Comput 6:910–929. doi:10.1021/ct900440t

    Article  CAS  Google Scholar 

  • Reblova K, Sponer JE, Spackova N, Besseova I, Sponer J (2011) A-minor tertiary interactions in RNA kink-turns. Molecular dynamics and quantum chemical analysis. J Phys Chem B 115:13897–13910

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Panigrahi S, Bhattacharyya M, Bhattacharyya D (2008) Structure, stability, and dynamics of canonical and noncanonical base pairs: quantum chemical studies. J Phys Chem B 112:3786–3796. doi:10.1021/jp076921e

    Article  PubMed  CAS  Google Scholar 

  • Shankar N, Kennedy SD, Chen G, Krugh TR, Turner DH (2006) The NMR structure of an internal loop from 23S ribosomal RNA differs from its structure in crystals of 50S ribosomal subunits. Biochemistry 45:11776–11789. doi:10.1021/bi0605787

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Mitra A, Sharma S, Singh H, Bhattacharyya D (2008) Quantum chemical studies of structures and binding in noncanonical RNA base pairs: the trans Watson-Crick: Watson-Crick family. J Biomol Struct Dyn 25:709–732

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Sharma S, Chawla M, Mitra A (2009) Modeling the noncovalent interactions at the metabolite binding site in purine riboswitches. J Mol Model 15:633–649. doi:10.1007/s00894-008-0384-y

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Chawla M, Sharma S, Mitra A (2010a) On the role of Hoogsteen:Hoogsteen interactions in RNA: Ab initio investigations of structures and energies. RNA 16:942–957. doi:papers://8F282AF1-C00B-4965-8450-641CADBEB600/Paper/p1255

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Sponer JE, Sponer J, Sharma S, Bhattacharyya D, Mitra A (2010b) On the role of the cis Hoogsteen:sugar-edge family of base pairs in platforms and triplets-quantum chemical insights into RNA structural biology. J Phys Chem B 114:3307–3320. doi:10.1021/jp910226e

    Article  PubMed  CAS  Google Scholar 

  • Siegfried NA, Metzger SL, Bevilacqua PC (2007) Folding cooperativity in RNA and DNA is dependent on position in the helix. Biochemistry 46:172–181. doi:10.1021/bi0613751

    Article  PubMed  CAS  Google Scholar 

  • Špacková N, Cheatham TE, Ryjácek F, Lankaš F, van Meervelt L, Hobza P, Šponer J (2003) Molecular dynamics simulations and thermodynamics analysis of DNA–drug complexes. Minor groove binding between 4′,6-diamidino-2-phenylindole and DNA duplexes in solution. J Am Chem Soc 125:1759–1769. doi:10.1021/ja025660d

    Article  PubMed  Google Scholar 

  • Spirko V, Sponer J, Hobza P (1997) Anharmonic and harmonic intermolecular vibrational modes of the DNA base pairs. J Chem Phys 106:1472–1479

    Article  CAS  Google Scholar 

  • Sponer J, Hobza P (1994a) Bifurcated hydrogen-bonds in DNA crystal-structures – an ab-initio quantum-chemical study. J Am Chem Soc 116:709–714

    Article  CAS  Google Scholar 

  • Sponer J, Hobza P (1994b) Nonplanar geometries of DNA bases – ab-initio 2nd-order Moller-Plesset study. J Phys Chem 98:3161–3164

    Article  CAS  Google Scholar 

  • Sponer J, Lankas F (eds) (2006) Computational studies of RNA and DNA. Challenges and advances in computational chemistry and physics. Springer, Dordrecht

    Google Scholar 

  • Sponer J, Leszczynski J, Hobza P (1996a) Nature of nucleic acid-base stacking: nonempirical ab initio and empirical potential characterization of 10 stacked base dimers. Comparison of stacked and H-bonded base pairs. J Phys Chem 100:5590–5596

    Article  CAS  Google Scholar 

  • Sponer J, Leszczynski J, Hobza P (1996b) Structures and energies of hydrogen-bonded DNA base pairs. A nonempirical study with inclusion of electron correlation. J Phys Chem 100:1965–1974

    Article  CAS  Google Scholar 

  • Sponer J, Leszczynski J, Vetterl V, Hobza P (1996c) Base stacking and hydrogen bonding in protonated cytosine dimer: the role of molecular ion-dipole and induction interactions. J Biomol Struct Dyn 13:695–706

    Article  PubMed  CAS  Google Scholar 

  • Sponer J, Gabb HA, Leszczynski J, Hobza P (1997) Base-base and deoxyribose-base stacking interactions in B-DNA and Z-DNA: a quantum-chemical study. Biophys J 73:76–87

    Article  PubMed  CAS  Google Scholar 

  • Sponer J, Sabat M, Gorb L, Leszczynski J, Lippert B, Hobza P (2000) The effect of metal binding to the N7 site of purine nucleotides on their structure, energy, and involvement in base pairing. J Phys Chem B 104:7535–7544. doi:10.1021/jp001711m

    Article  CAS  Google Scholar 

  • Sponer J, Leszczynski J, Hobza P (2001) Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases. Biopolymers 61:3–31. doi:10.1002/bip.10048

    Article  PubMed  CAS  Google Scholar 

  • Sponer J, Mokdad A, Sponer JE, Spackova N, Leszczynski J, Leontis NB (2003) Unique tertiary and neighbor interactions determine conservation patterns of cis Watson-Crick A/G base-pairs. J Mol Biol 330:967–978. doi:10.1016/s0022-2836(03)00667-3

    Article  PubMed  CAS  Google Scholar 

  • Sponer J, Jurecka P, Hobza P (2004) Accurate interaction energies of hydrogen-bonded nucleic acid base pairs. J Am Chem Soc 126:10142–10151. doi:10.1021/ja048436s

    Article  PubMed  CAS  Google Scholar 

  • Sponer JE, Leszczynski J, Sychrovsky V, Sponer J (2005a) Sugar edge/sugar edge base pairs in RNA: stabilities and structures from quantum chemical calculations. J Phys Chem B 109:18680–18689. doi:10.1021/jp053379q

    Article  PubMed  CAS  Google Scholar 

  • Sponer JE, Spackova N, Kulhanek P, Leszczynski J, Sponer J (2005b) Non-Watson-Crick base pairing in RNA. Quantum chemical analysis of the cis Watson-Crick/sugar edge base pair family. J Phys Chem A 109:2292–2301. doi:10.1021/jp050132k

    Article  PubMed  CAS  Google Scholar 

  • Sponer JE, Spackova N, Leszczynski J, Sponer J (2005c) Principles of RNA base pairing: structures and energies of the trans Watson-Crick/sugar edge base pairs. J Phys Chem B 109:11399–11410. doi:10.1021/jp051126r

    Article  PubMed  CAS  Google Scholar 

  • Sponer J, Jurecka P, Marchan I, Luque FJ, Orozco M, Hobza P (2006) Nature of base stacking: reference quantum-chemical stacking energies in ten unique B-DNA base-pair steps. Chem Eur J 12:2854–2865. doi:10.1002/chem.200501239

    Article  PubMed  CAS  Google Scholar 

  • Sponer JE, Reblova K, Mokdad A, Sychrovsky V, Leszczynski J, Sponer J (2007) Leading RNA tertiary interactions: structures, energies, and water insertion of a-minor and p-interactions. A quantum chemical view. J Phys Chem B 111:9153–9164. doi:10.1021/jp0704261

    Article  PubMed  CAS  Google Scholar 

  • Sponer J, Riley KE, Hobza P (2008) Nature and magnitude of aromatic stacking of nucleic acid bases. Phys Chem Chem Phys 10:2595–2610. doi:10.1039/b719370j

    Article  PubMed  CAS  Google Scholar 

  • Sponer J, Zgarbova M, Jurecka P, Riley KE, Sponer JE, Hobza P (2009) Reference quantum chemical calculations on RNA base pairs directly involving the 2′-OH group of ribose. J Chem Theory Comput 5:1166–1179. doi:10.1021/ct800547k

    Article  CAS  Google Scholar 

  • Sponer J, Sponer JE, Petrov AI, Leontis NB (2010) Quantum chemical studies of nucleic acids can we construct a bridge to the RNA structural biology and bioinformatics communities? J Phys Chem B 114:15723–15741. doi:10.1021/jp104361m

    Article  PubMed  CAS  Google Scholar 

  • Stombaugh J, Zirbel CL, Westhof E, Leontis NB (2009) Frequency and isostericity of RNA base pairs. Nucleic Acids Res 37:2294–2312. doi:10.1093/nar/gkp011

    Article  PubMed  CAS  Google Scholar 

  • Svozil D, Hobza P, Sponer J (2010) Comparison of intrinsic stacking energies of ten unique dinucleotide steps in A-RNA and B-DNA duplexes. Can we determine correct order of stability by quantum-chemical calculations? J Phys Chem B 114:1191–1203. doi:10.1021/jp910788e

    Article  PubMed  CAS  Google Scholar 

  • Swart M, Guerra CF, Bickelhaupt FM (2004) Hydrogen bonds of RNA are stronger than those of DNA, but NMR monitors only presence of methyl substituent in uracil/thymine. J Am Chem Soc 126:16718–16719. doi:10.1021/ja045276b

    Article  PubMed  CAS  Google Scholar 

  • Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093. doi:10.1021/cr9904009

    Article  PubMed  CAS  Google Scholar 

  • Vlieghe D, Sponer J, Van Meervelt L (1999) Crystal structure of d(GGCCAATTGG) complexed with DAPI reveals novel binding mode. Biochemistry 38:16443–16451

    Article  PubMed  CAS  Google Scholar 

  • Vokacova Z, Sponer J, Sponer JE, Sychrovsky V (2007) Theoretical study of the scalar coupling constants across the noncovalent contacts in RNA base pairs: the cis- and trans-Watson-Crick/sugar edge base pair family. J Phys Chem B 111:10813–10824. doi:10.1021/jp072822p

    Article  PubMed  CAS  Google Scholar 

  • Yanson IK, Teplitsky AB, Sukhodub LF (1979) Experimental studies of molecular-interactions between nitrogen bases of nucleic-acids. Biopolymers 18:1149–1170

    Article  PubMed  CAS  Google Scholar 

  • Yildirim I, Turner DH (2005) RNA challenges for computational chemists. Biochemistry 44:13225–13234. doi:10.1021/bi051236o

    Article  PubMed  CAS  Google Scholar 

  • Yildirim I, Stern HA, Sponer J, Spackova N, Turner DH (2009) Effects of restrained sampling space and nonplanar amino groups on free-energy predictions for RNA with imino and sheared tandem GA base pairs flanked by GC, CG, iGiC or iCIG base pairs. J Chem Theory Comput 5:2088–2100. doi:10.1021/ct800540c

    Article  PubMed  CAS  Google Scholar 

  • Zgarbova M, Otyepka M, Sponer J, Hobza P, Jurecka P (2010) Large-scale compensation of errors in pairwise-additive empirical force fields: comparison of AMBER intermolecular terms with rigorous DFT-SAPT calculations. Phys Chem Chem Phys 12:10476–10493

    Article  PubMed  CAS  Google Scholar 

  • Zgarbova M, Jurecka P, Banas P, Otyepka M, Sponer JE, Leontis NB, Zirbel CL, Sponer J (2011a) Noncanonical hydrogen bonding in nucleic acids. Benchmark evaluation of key base-phosphate interactions in folded RNA molecules using quantum-chemical calculations and molecular dynamics simulations. J Phys Chem A 115:11277–11292. doi:10.1021/jp204820b

    Google Scholar 

  • Zgarbová M, Otyepka M, Sponer J, Mládek A, Banáš P, Cheatham TE, Jurečka P (2011b) Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J Chem Theory Comput 7:2886–2902

    Article  PubMed  Google Scholar 

  • Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157–167. doi:10.1021/ar700111a

    Article  PubMed  CAS  Google Scholar 

  • Zirbel CL, Sponer JE, Sponer J, Stombaugh J, Leontis NB (2009) Classification and energetics of the base-phosphate interactions in RNA. Nucleic Acids Res 37:4898–4918. doi:10.1093/nar/gkp468

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Anton I. Petrov for assistance in organizing data and preparing tables. This work was supported by grants 203/09/1476, P208/12/1878, and P208/11/1822 from the Grant Agency of the Czech Republic, grants AV0Z50040507 and AV0Z50040702 from the Ministry of Education of the Czech Republic, and “CEITEC - Central European Institute of Technology” (CZ.1.05/1.1.00/02.0068) from the European Regional Development Fund and by grants from the National Institutes of Health to NBL (grant numbers 1R01GM085328-01A1 and 2R15GM055898-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Šponer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Šponer, J., Šponer, J.E., Leontis, N.B. (2012). Quantum Chemical Studies of Recurrent Interactions in RNA 3D Motifs. In: Leontis, N., Westhof, E. (eds) RNA 3D Structure Analysis and Prediction. Nucleic Acids and Molecular Biology, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25740-7_12

Download citation

Publish with us

Policies and ethics