Skip to main content

Monoidic Codes in Cryptography

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7071))

Abstract

At SAC 2009, Misoczki and Barreto proposed a new class of codes, which have parity-check matrices that are quasi-dyadic. A special subclass of these codes were shown to coincide with Goppa codes and those were recommended for cryptosystems based on error-correcting codes. Quasi-dyadic codes have both very compact representations and allow for efficient processing, resulting in fast cryptosystems with small key sizes. In this paper, we generalize these results and introduce quasi-monoidic codes, which retain all desirable properties of quasi-dyadic codes. We show that, as before, a subclass of our codes contains only Goppa codes or, for a slightly bigger subclass, only Generalized Srivastava codes. Unlike before, we also capture codes over fields of odd characteristic. These include wild Goppa codes that were proposed at SAC 2010 by Bernstein, Lange, and Peters for their exceptional error-correction capabilities. We show how to instantiate standard code-based encryption and signature schemes with our codes and give some preliminary parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): PQCrypto 2008. LNCS, vol. 5299. Springer, Heidelberg (2008)

    Google Scholar 

  2. Baldi, M., Chiaraluce, F.: Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC code. In: IEEE International Symposium on Information Theory – ISIT 2007, pp. 2591–2595. IEEE (2007)

    Google Scholar 

  3. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing Key Length of the McEliece Cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Barreto, P.S.L.M., Cayrel, P.-L., Misoczki, R., Niebuhr, R.: Quasi-Dyadic CFS Signatures. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 336–349. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Barreto, P.S.L.M., Lindner, R., Misoczki, R.: Decoding square-free Goppa codes over \(\mathbb{F}_p\). Cryptology ePrint Archive, Report 2010/372 (2010), http://eprint.iacr.org/2010/372.pdf

  6. Bernstein, D.J., Lange, T., Peters, C.: Wild McEliece. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 143–158. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Bernstein, D.J., Lange, T., Peters, C.: Smaller Decoding Exponents: Ball-Collision Decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Courtois, N., Finiasz, M., Sendrier, N.: How to Achieve a McEliece-Based Digital Signature Scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Finiasz, M.: Parallel-CFS. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 159–170. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic Cryptanalysis of McEliece Variants with Compact Keys. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Faugère, J.-C., Otmani, A., Perret, L., Tilllich, J.-P.: Algebraic cryptanalysis of compact McEliece’s variants – toward a complexity analysis. In: International Conference on Symbolic Computation and Cryptography – SCC 2010, pp. 45–56 (2010)

    Google Scholar 

  12. Finiasz, M., Sendrier, N.: Security Bounds for the Design of Code-Based Cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Gaborit, P.: Shorter keys for code based cryptography. In: International Workshop on Coding and Cryptography – WCC 2005, pp. 81–91. ACM Press, Bergen (2005)

    Google Scholar 

  14. Gauthier Umaña, V., Leander, G.: Practical key recovery attacks on two McEliece variants. In: Cid, C., Faugère, J.-C. (eds.) International Conference on Symbolic Computation and Cryptography – SCC 2010, pp. 27–44 (2010)

    Google Scholar 

  15. Lang, S.: Algebra, revised 3rd edn. Springer, Heidelberg (2002)

    Google Scholar 

  16. Misoczki, R., Barreto, P.S.L.M.: Compact McEliece Keys from Goppa Codes. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Deep Space Network Progress Report 44, 114–116 (1978)

    Google Scholar 

  18. Monico, C., Rosenthal, J., Shokrollahi, A.: Using low density parity check codes in the McEliece cryptosystem. In: IEEE International Symposium on Information Theory – ISIT 2000, p. 215. IEEE, Sorrento (2000)

    Google Scholar 

  19. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. North-Holland Mathematical Library, vol. 16 (1977)

    Google Scholar 

  20. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory 15(2), 159–166 (1986)

    MathSciNet  MATH  Google Scholar 

  21. Otmani, A., Tillich, J.-P., Dallot, L.: Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic codes. Mathematics in Computer Science 3(2), 129–140 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Persichetti, E.: Compact McEliece keys based on quasi-dyadic Srivastava codes. Cryptology ePrint Archive, Report 2011/179 (2011), http://eprint.iacr.org/2011/179.pdf

  23. Peters, C.: Information-set Decoding For Linear Codes over \(\mathbb{F}_q\). In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 81–94. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Peters, C.: Curves, Codes, and Cryptography. Ph.D. thesis, Technische Universiteit Eindhoven, the Netherlands (2011), http://alexandria.tue.nl/extra2/711052.pdf

  25. Sidelnikov, V., Shestakov, S.: On the insecurity of cryptosystems based on generalized Reed-Solomon codes. Discrete Mathematics and Applications 1(4), 439–444 (1992)

    Google Scholar 

  26. Tzeng, K.K., Zimmermann, K.: On extending Goppa codes to cyclic codes. IEEE Transactions on Information Theory 21, 712–716 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barreto, P.S.L.M., Lindner, R., Misoczki, R. (2011). Monoidic Codes in Cryptography. In: Yang, BY. (eds) Post-Quantum Cryptography. PQCrypto 2011. Lecture Notes in Computer Science, vol 7071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25405-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25405-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25404-8

  • Online ISBN: 978-3-642-25405-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics