Skip to main content

Abstract

The hologenome theory of evolution considers the holobiont (the animal or plant with all of its associated microorganisms) as a unit of selection in evolution. The hologenome is defined as the sum of the genetic information of the host and its microbiota. The theory is based on four generalizations, each of which is supported by a large body of empirical data: (1) All animals and plants establish symbiotic relationships with microorganisms; often the genetic information of the diverse microbiota exceeds that of the host. (2) Cooperation between the host and the microbiota contributes to the fitness of the holobiont. (3) Variation in the hologenome can be brought about by changes in either the host or the microbiota genomes; under environmental stress, the symbiotic microbial community can change rapidly by a variety of mechanisms including microbial amplification, horizontal gene transfer, and acquisition of new microorganisms from the environment. (4) Symbiotic microorganisms are transmitted between generations. These points taken together suggest that the genetic wealth of diverse microbial symbionts can play an important role both in adaptation and in evolution of higher organisms. During periods of rapid change in the environment, the diverse microbial symbiont community can aid the holobiont in surviving, multiplying, and buying the time necessary for the host genome to evolve. The distinguishing feature of the hologenome theory is that it considers all of the diverse microbiota associated with the animal or the plant as part of the evolving holobiont. The hologenome theory contains Lamarckian aspects within a Darwinian framework, accentuating both cooperation and competition within the holobiont and with other holobionts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T, Bignell DE, Higashi M (eds) (2000) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Abrams GD, Bishop JE (1967) Effect of normal microbial flora on gastrointestinal motility. Proc Soc Exp Biol Med 126:301–304

    PubMed  CAS  Google Scholar 

  • Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723

    Article  PubMed  CAS  Google Scholar 

  • Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 104:979–984

    Article  PubMed  CAS  Google Scholar 

  • Barbieri E, Paster BJ, Hughes D, Zurek L, Moser DP, Teske A, Sogin ML (2001) Phylogenetic characterization of epibiotic bacteria in the accessory nidamental gland and egg capsules of the squid Loligo pealei (Cephalopoda: Loliginidae). Environ Microbiol 3:151–167

    Article  PubMed  CAS  Google Scholar 

  • Baumann P, Moran NA, Baumann L (2006) Bacteriocyte-associated endosymbionts of insects. In: Dworkin M, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 1. Springer, New York, pp 403–438

    Chapter  Google Scholar 

  • Beijerinck MW (1901) Über oligonitrophile mikroben, centralblatt für bakteriologie, parasitenkunde, infektionskrankheiten und hygiene. Abteilung II 7:561–582

    Google Scholar 

  • Ben-Yosef M, Aharon Y, Jurkevitch E, Yuval B (2010) Give us the tools and we will do the job: symbiotic bacteria affect olive fly fitness in a diet-dependent fashion. Proc Biol Sci 277:1545–1552

    Article  PubMed  CAS  Google Scholar 

  • Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, Rohwer F (2003) Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol 185:6220–6223

    Article  PubMed  CAS  Google Scholar 

  • Bright M, Bulgheresi S (2010) A complex journey: transmission of microbial symbionts. Nat Rev Microbiol 8:218–230

    Article  PubMed  CAS  Google Scholar 

  • Brune A, Stingl U (2006) Prokaryotic symbionts of termite gut flagellates: phylogenetic and metabolic implications of a tripartite symbiosis. Prog Mol Subcell Biol 41:39–60

    Article  PubMed  CAS  Google Scholar 

  • Burkhardt RW (1972) The inspiration of Lamarck’s belief in evolution. J Hist Biol 5:413–438

    Article  PubMed  CAS  Google Scholar 

  • Buss LW (1987) The evolution of individuality. Princeton University Press, Princeton

    Google Scholar 

  • Cankar K, Kraigher H, Ravnikar M, Rupnik M (2005) Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiol Lett 244:341–345

    Article  PubMed  CAS  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of Archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263

    PubMed  CAS  Google Scholar 

  • Collado MC, Isolauri E, Lairinen K, Sahminen S (2010) Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr 95(5):1023–1030

    Article  CAS  Google Scholar 

  • Coyne MJ, Reinap B, Lee MM, Comstock LE (2005) Human symbionts use a host-like pathway for surface fucosylation. Science 307:1778–1781

    Article  PubMed  CAS  Google Scholar 

  • Dale C, Moran NA (2006) Molecular interactions between bacterial symbionts and their hosts. Cell 126:453–465

    Article  PubMed  CAS  Google Scholar 

  • De Filippoa C, Cavalieria D, Di Paolab M et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–14696

    Article  Google Scholar 

  • Dehority BA (2003) Rumen microbiology. Nottingham University Press, Nottingham

    Google Scholar 

  • Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449:811–818

    Article  PubMed  CAS  Google Scholar 

  • Devi SM, Ahmed I, Khan AA et al (2006) Genomes of Helicobacter pylori from native Peruvians suggest a mixture of ancestral and modern lineages and reveal a western type cag-pathogenicity island. BMC Genomics 7:191

    Article  PubMed  CAS  Google Scholar 

  • Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu WH, Lakshmanan A, Wade WG (2010) The human oral microbiome. J Bacteriol 192:50012–50017

    Article  CAS  Google Scholar 

  • Dominguez-Bello MG, Costellob EK, Knight R (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107:11971–11975

    Article  PubMed  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed  Google Scholar 

  • Edwards JE, McEwan NR, Travis AJ, Wallace RJ (2004) 16S rDNA library-based analysis of ruminal bacterial diversity. Antonie van Leeuwenhoek 86:263–281

    Article  CAS  Google Scholar 

  • Fallowski PG, Dubinsky Z, Muscatine L, Porter JW (1984) Light and the bioenergetics of a symbiotic coral. Bioscience 34:705–709

    Article  Google Scholar 

  • Fiore CL, Jarett JK, Olson ND, Lesser MP (2010) Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol 10:455–463

    Article  CAS  Google Scholar 

  • Foster JS, Kolenbrander PE (2004) Development of a multispecies oral bacterial community in a saliva-conditioned flow cell. Appl Environ Microbiol 70:4340–4348

    Article  PubMed  CAS  Google Scholar 

  • Frank DN, Pace NR (2008) Gastrointestinal microbiology enters the metagenomics era. Curr Opin Gastroenterol 24:4–10

    Article  PubMed  CAS  Google Scholar 

  • Fraune S, Bosch TCG (2007) Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proc Natl Acad Sci USA 104:13146–13151

    Article  PubMed  CAS  Google Scholar 

  • Frias-lopez J, Zerkle AL, Bonheyo GT, Fouke BW (2002) Partitioning of bacterial communities between seawater and healthy, black band diseased, and dead coral surfaces. Appl Environ Microbiol 68:2214–2228

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SF, McDonald E, Boyle N et al (2010) Symbiosis as a source of selectable epigenetic variation: taking the heat for the big guy. Philos Trans R Soc Lond B Biol Sci 365:671–678

    Article  PubMed  Google Scholar 

  • Gould SJ (1999) A division of worms. Nat Hist 108:18–26

    Google Scholar 

  • Grice EA, Kong HH, Conlan S (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192

    Article  PubMed  CAS  Google Scholar 

  • Gündüz E, Douglas AE (2009) Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proc R Soc 276:987–991

    Article  CAS  Google Scholar 

  • Hehemann JH, Correc G, Barbeyron T et al (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:908–914

    Article  PubMed  CAS  Google Scholar 

  • Heijtza RD, Wange S, Anuard F et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA. doi:10.1073/pnas.1010529108

  • Hentschel U, Steinert M, Hacker J (2000) Common molecular mechanisms of symbiosis and pathogenesis. Trends Microbiol 8:226–231

    Article  PubMed  CAS  Google Scholar 

  • Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, VongKaluny C, Noparatnaraporn N, Kudo T (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71:6590–6599

    Article  PubMed  CAS  Google Scholar 

  • Hooper LV, Midtvedt T, Gordon JI (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Ann Rev Nutr 22:283–307

    Article  CAS  Google Scholar 

  • Ikeda S, Okubo T, Anda M et al (2010) Community- and genome-based views of plant-associated bacteria: plant–bacterial interactions in soybean and rice. Plant Cell Physiol 51:1398–1410

    Article  PubMed  CAS  Google Scholar 

  • Iniguez AL, Dong YM, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant Microbe Interact 17:1078–1085

    Article  PubMed  CAS  Google Scholar 

  • Iwanaga S, Lee BL (2005) Recent advances in the innate immunity of invertebrate animals. J Biochem Mol Biol 38:128–150

    Article  PubMed  CAS  Google Scholar 

  • Jablonka E, Lamb MJ (2005) Evolution in four dimensions: genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT Press, Cambridge

    Google Scholar 

  • Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329:212–215

    Article  PubMed  CAS  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium medicago model. Nat Rev Microbiol 5:619–633

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi Y, Hosokawa T, Fukatsu T (2007) Insect–microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol 73:4308–4316

    Google Scholar 

  • Kneip C, Lockhart P, Voss C, Maier UG (2007) Nitrogen fixation in eukaryotes–new models for symbiosis. BMC Evol Biol 7:55. doi: 10.1186/1471-2148-7-55

    Article  PubMed  CAS  Google Scholar 

  • Koenig JE, Spor A, Scalfone N et al (2010) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA 108(Suppl 1):4578–4585

    PubMed  Google Scholar 

  • Koren O, Rosenberg E (2006) Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl Environ Microbiol 72:5254–5259

    Article  PubMed  CAS  Google Scholar 

  • Laitinen K, Poussa T, Isolauri E et al (2009) Probiotic and dietary counseling contribute to glucose regulation during and after pregnancy: a randomised controlled trial. Br J Nutr 101:1679–1687

    Article  PubMed  CAS  Google Scholar 

  • Lambais MR, Crowley DE, Cury JC, B¨ull RC, Rodrigues RR (2006) Bacterial diversity in tree canopies of the Atlantic forest. Science 312:1917

    Article  PubMed  CAS  Google Scholar 

  • Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Møller K (2002) Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68: 673–690

    Article  PubMed  CAS  Google Scholar 

  • Ley RE, B¨ackhed F, Turnbaugh P, Lozupone CA, Knigh RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075

    Article  PubMed  CAS  Google Scholar 

  • Ley RE, Peterson DA, Gordon JI (2006a) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  PubMed  CAS  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006b) Human gut microbes associated with obesity. Nature 444:1022–1023

    Article  PubMed  CAS  Google Scholar 

  • Lilburn TG, Kim KS, Ostrom NE, Byzek KR, Leadbetter JR, Breznak JA (2001) Nitrogen fixation by symbiotic and free-living spirochetes. Science 292:2495–2498

    Article  PubMed  CAS  Google Scholar 

  • MacConnachie AA, Fox R, Kennedy DR, Seaton RA (2009) Faecal transplant for recurrent Clostridium difficile-associated diarrhoea: a UK case series. QJM 102:781–784

    Article  PubMed  CAS  Google Scholar 

  • Margulis L (1993) Symbiosis in Cell Evolution: Microbial Communities in the Archean and Proterozoic Eons. 2nd edn. W.H. Freeman and Co., New York

    Google Scholar 

  • Martens EC, Roth R, Heuser JE, Gordon JI (2009) Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont. J Biol Chem 284:18445–18457

    Article  PubMed  CAS  Google Scholar 

  • Martínez-García M, Díaz-Valéz M, Wanner G, Ramos-Esplá A, Antón J (2007) Microbial community associated with the colonial ascidian Cyctodytes dellechiajei. Environ Microbiol 9:521–534

    Google Scholar 

  • Mateos M, Castrezana SJ, Nankivell BJ, Estes AM, Markow TA, Moran NA (2006) Heritable endosymbionts of Drosophila. Genetics 174:363–376

    Article  PubMed  CAS  Google Scholar 

  • McFall-Ngai MJ (1999) Consequences of evolving with bacterial symbionts: insights from the squid–Vibrio association. Annu Rev Ecol Syst 30:235–256

    Article  Google Scholar 

  • McFall-Ngai MJ (2002) Unseen forces: the influence of bacteria on animal development. Dev Biol 242:1–14

    Article  PubMed  CAS  Google Scholar 

  • Mohamed NM, Colman AS, Tal Y, Hill RT (2008) Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges. Environ Microbiol 10:2910–2921

    Article  PubMed  CAS  Google Scholar 

  • Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328:624–627

    Article  PubMed  CAS  Google Scholar 

  • Nardi JB, Mackieb RI, Dawson JO (2002) Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystems? J Insect Physiol 48:751–763

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Worobey M, Kuo, CH et al. (2010) Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol. 8, e1000546

    Google Scholar 

  • O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693

    Article  PubMed  CAS  Google Scholar 

  • Pollard JW (1984) Is Weismann’s barrier absolute? In: Ho MW, Saunders PT (eds) Beyond neo-Darwinism: introduction to the new evolutionary paradigm. Academic, London, pp 291–315

    Google Scholar 

  • Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8:2067–2073

    Article  CAS  Google Scholar 

  • Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14

    Article  CAS  Google Scholar 

  • Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10

    Article  Google Scholar 

  • Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362

    Article  PubMed  CAS  Google Scholar 

  • Russell JA, Latorre A, Sabater-Mũnoz B, Moya A, Moran NA (2003) Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol Ecol 12:1061–1075

    Article  PubMed  CAS  Google Scholar 

  • Savage DC, Siegel JD, Snellen JE, Whitt DD (1981) Transit time of epithelial cells in the small intestines of germfree mice and ex-germfree mice associated with indigenous microorganisms. Appl Environ Microbiol 42:996–1001

    PubMed  CAS  Google Scholar 

  • Scarborough CL, Ferrari J, Godfray HCJ (2005) Aphids protected from pathogen by endosymbiont. Science 310:1781–1783

    Article  PubMed  CAS  Google Scholar 

  • Sharon G, Segal D, Ringo JM et al (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci USA 107:20051–20056

    Article  PubMed  CAS  Google Scholar 

  • Sharp KH, Eam B, Faulkner DJ, Haygood MG (2007) Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Appl Environ Microbiol 73:622–629

    Article  PubMed  CAS  Google Scholar 

  • Silva AM, Barbosa FHF, Duarte R, Vieira LQ, Arantes RME, Nicoli JR (2004) Effect of Bifidobacterium longum ingestion on experimental salmonellosis in mice. J Appl Microbiol 97:29–37

    Article  PubMed  CAS  Google Scholar 

  • Skaljac M, Zanic K, Ban SG, Kontsedalov S, Ghanim M (2010) Co-infection and localization of secondary symbionts in two whitefly species. BMC Microbiol 10:142

    Article  PubMed  Google Scholar 

  • Smith KP, Handelsman J, Goodman RM (1999) Genetic basis in plants for interactions with disease-suppressive bacteria. Proc Natl Acad Sci USA 96:4786–4790

    Article  PubMed  CAS  Google Scholar 

  • Stougaard J (2000) Regulators and regulation of legume root nodule development. Plant Physiol 124:531–540

    Article  PubMed  CAS  Google Scholar 

  • Sundset MA, Praesteng KE, Cann IK, Mathiesen SD, Mackie RI (2007) Novel rumen bacterial diversity in two geographically separated sub-specie of reindeer. Microb Ecol 54:424–438

    Article  PubMed  Google Scholar 

  • Tannock G (1995) Normal microflora. Chapman & Hall, London

    Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge associated microorganisms: evolution, ecology and biotechnological potentials. Microbiol Mol Biol Rev 71:295–347

    Article  PubMed  CAS  Google Scholar 

  • Thingstad TF, Lignell R (1997) Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat Microb Ecol 13:19–27

    Article  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  PubMed  Google Scholar 

  • Turnbaugh PJ, Ridaura VK, Faith JJ et al (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1(6):6ra14

    Article  PubMed  CAS  Google Scholar 

  • Turnes MS, Hay ME, Fenical W (1989) Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 246:116

    Article  Google Scholar 

  • Veneti ZL, Reuter M, Montenegro H, Hornett EA, Charlat S, Hurst GD (2005) Interactions between inherited bacteria and their hosts: the Wolbachia paradigm. The influence of Cooperative Bacteria on Animal Host Biology (McFall-Ngai MJ, Henderson B & Ruby E-G, eds), pp. 119–141. Cambridge University Press, New York

    Google Scholar 

  • Visick KL, Foster J, Doino J, McFall-Ngai MJ, Ruby EG (2000) Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J Bacteriol 182:4578–4586

    Article  PubMed  CAS  Google Scholar 

  • Wallace RJ (2004) Antimicrobial properties of plant secondary metabolites. Proc Nutr Soc 63:621–629

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Qui YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  PubMed  CAS  Google Scholar 

  • Webster NS, Wilson KJ, Blackall LL, Hill RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444

    Article  PubMed  CAS  Google Scholar 

  • Weismann A (1893) The germ-plasm: a theory of heredity. Charles Scribner’s Sons/Electronic Scholarly Publishing, New York

    Google Scholar 

  • Weitz JS, Hartman H, Levin SA (2005) Coevolutionary arms races between bacteria and bacteriophage. Proc Natl Acad Sci USA 102:9535–9540

    Article  PubMed  CAS  Google Scholar 

  • Wilson DS, Sober E (1989) Reviving the superorganism. J Theor Biol 136:337–356

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson DM (2001) Mycorrhizal evolution. Trends Ecol Evol 16:64–65

    Article  PubMed  Google Scholar 

  • Wostmann BS (1981) The germ-free animal in nutritional studies. Annu Rev Nutr 1:257–297

    Article  PubMed  CAS  Google Scholar 

  • Wostmann BS, Larkin C, Moriarty A, Bruckner-Kardoss E (1983) Dietary intake, energy metabolism and excretory losses of adult male germfree Wistar rats. Lab Anim Sci 33:46–50

    PubMed  CAS  Google Scholar 

  • Wust PK, Horn MA, Drake HL (2011) Clostridiaceae and Enterobacteriaceae as active fermenters in earthworm gut content. ISME 5:92–106

    Article  CAS  Google Scholar 

  • Xu J, Mahowald MA, Ley RE (2007) Evolution of symbiotic bacteria in the distal human intestine. PLOS Biol 5:1574–1586

    CAS  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA 96:1463–1468

    Article  PubMed  CAS  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735

    Article  PubMed  CAS  Google Scholar 

  • Zoetendal EG, Akkermans ADL, van Vliet WM et al (2001) A host genotype affects the bacterial community in the human gastrointestinal tract. Microb Ecol Health Dis 13:129–134

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Rosenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosenberg, E., Zilber-Rosenberg, I. (2012). The Hologenome Concept. In: Rosenberg, E., Gophna, U. (eds) Beneficial Microorganisms in Multicellular Life Forms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21680-0_24

Download citation

Publish with us

Policies and ethics