Skip to main content

Tracing Evolving Clusters by Subspace and Value Similarity

  • Conference paper
Book cover Advances in Knowledge Discovery and Data Mining (PAKDD 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6635))

Included in the following conference series:

Abstract

Cluster tracing algorithms are used to mine temporal evolutions of clusters. Generally, clusters represent groups of objects with similar values. In a temporal context like tracing, similar values correspond to similar behavior in one snapshot in time. Each cluster can be interpreted as a behavior type and cluster tracing corresponds to tracking similar behaviors over time. Existing tracing approaches are designed for datasets satisfying two specific conditions: The clusters appear in all attributes, i.e. fullspace clusters, and the data objects have unique identifiers. These identifiers are used for tracking clusters by measuring the number of objects two clusters have in common, i.e. clusters are traced based on similar object sets.

These conditions, however, are strict: First, in complex data, clusters are often hidden in individual subsets of the dimensions. Second, mapping clusters based on similar objects sets does not reflect the idea of tracing similar behavior types over time, because similar behavior can even be represented by clusters having no objects in common. A tracing method based on similar object values is needed. In this paper, we introduce a novel approach that traces subspace clusters based on object value similarity. Neither subspace tracing nor tracing by object value similarity has been done before.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, C.C.: On change diagnosis in evolving data streams. TKDE 17(5), 587–600 (2005)

    Google Scholar 

  2. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: VLDB, pp. 81–92 (2003)

    Google Scholar 

  3. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for projected clustering of high dimensional data streams. In: VLDB, pp. 852–863 (2004)

    Google Scholar 

  4. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: SIGMOD, pp. 94–105 (1998)

    Google Scholar 

  5. Böttcher, M., Höppner, F., Spiliopoulou, M.: On exploiting the power of time in data mining. SIGKDD Explorations 10(2), 3–11 (2008)

    Article  Google Scholar 

  6. Ester, M., Kriegel, H.P., Jörg, S., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, pp. 226–231 (1996)

    Google Scholar 

  7. Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models. In: KDD, pp. 63–72 (1999)

    Google Scholar 

  8. Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Anshelevich, E., Egenhofer, M.J., Hwang, J. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 364–381. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. TKDD 3(1), 1–58 (2009)

    Article  Google Scholar 

  10. Li, Y., Han, J., Yang, J.: Clustering moving objects. In: KDD, pp. 617–622 (2004)

    Google Scholar 

  11. Müller, E., Günnemann, S., Assent, I., Seidl, T.: Evaluating clustering in subspace projections of high dimensional data. In: VLDB, pp. 1270–1281 (2009)

    Google Scholar 

  12. Procopiuc, C.M., Jones, M., Agarwal, P.K., Murali, T.M.: A monte carlo algorithm for fast projective clustering. In: SIGMOD, pp. 418–427 (2002)

    Google Scholar 

  13. Rosswog, J., Ghose, K.: Detecting and tracking spatio-temporal clusters with adaptive history filtering. In: ICDM Workshops, pp. 448–457 (2008)

    Google Scholar 

  14. Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., Schult, R.: MONIC - modeling and monitoring cluster transitions. In: KDD, pp. 706–711 (2006)

    Google Scholar 

  15. Vlachos, M., Gunopulos, D., Kollios, G.: Discovering similar multidimensional trajectories. In: ICDE, pp. 673–684 (2002)

    Google Scholar 

  16. Yiu, M.L., Mamoulis, N.: Frequent-pattern based iterative projected clustering. In: ICDM, pp. 689–692 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Günnemann, S., Kremer, H., Laufkötter, C., Seidl, T. (2011). Tracing Evolving Clusters by Subspace and Value Similarity. In: Huang, J.Z., Cao, L., Srivastava, J. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2011. Lecture Notes in Computer Science(), vol 6635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20847-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20847-8_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20846-1

  • Online ISBN: 978-3-642-20847-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics