Skip to main content

Classifying Graphs Using Theoretical Metrics: A Study of Feasibility

  • Conference paper
Database Systems for Adanced Applications (DASFAA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6637))

Included in the following conference series:

Abstract

Graph classification has become an increasingly important research topic in recent years due to its wide applications. However, one interesting problem about how to classify graphs based on the implicit properties of graphs has not been studied yet. To address it, this paper first conducts an extensive study on existing graph theoretical metrics and also propose various novel metrics to discover implicit graph properties. We then apply feature selection techniques to discover a subset of discriminative metrics by considering domain knowledge. Two classifiers are proposed to classify the graphs based on the subset of features. The feasibility of graph classification based on the proposed graph metrics and techniques has been experimentally studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive relationships in large data and knowledge bases. In: Proceedings of the 1989 ACM International Conference on Management of Data, pp. 253–262. ACM, New York (1989)

    Google Scholar 

  2. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proceedings of the 15th Annual ACM Symposium on Theory of Computing, pp. 171–183. ACM, New York (1983)

    Google Scholar 

  3. Bunke, H.: On a relation between graph edit distance and maximum common subgraph. Pattern Recognition Letters 18(9), 689–694 (1997)

    Article  Google Scholar 

  4. Cheng, J., Yu, J.X., Lin, X., Wang, H., Yu, P.S.: Fast computation of reachability labeling for large graphs. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 961–979. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Coffman, T.R., Marcus, S.E.: Dynamic classification of groups through social network analysis and hmms. In: IEEE Aerospace Conference, pp. 3197–3205 (2004)

    Google Scholar 

  6. Deshpande, M., Kuramochi, M., Wale, N., Karypis, G.: Frequent substructure-based approaches for classifying chemical compounds. IEEE Transaction on Knowledge and Data Engineering 17(8), 1036–1050 (2005)

    Article  Google Scholar 

  7. Diestel, R.: Graph Theory, 3rd edn., vol. 173. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  8. Faloutsos, M., Yang, Q., Siganos, G., Lonardi, S.: Evolution versus intelligent design: comparing the topology of protein-protein interaction networks to the internet. In: Proceedings of the LSS Computational Systems Bioinformatics Conference, Stanford, CA, pp. 299–310 (2006)

    Google Scholar 

  9. Montes-y-Gómez, M., López-López, A., Gelbukh, A.: Information retrieval with conceptual graph matching. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 312–321. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Jin, N., Young, C., Wang, W.: Graph classification based on pattern co-occurrence. In: Proceeding of the 18th ACM Conference on Information and Knowledge Management, pp. 573–582. ACM, New York (2009)

    Google Scholar 

  11. Jin, N., Young, C., Wang, W.: Gaia: graph classification using evolutionary computation. In: Proceedings of the 2010 International Conference on Management of Data, pp. 879–890. ACM, New York (2010)

    Google Scholar 

  12. Kong, X., Yu, P.S.: Semi-supervised feature selection for graph classification. In: Proceedings of the 16th ACM International Conference on Knowledge Discovery and Data Mining, pp. 793–802. ACM, New York (2010)

    Google Scholar 

  13. Luce, R., Perry, A.: A method of matrix analysis of group structure. Psychometrika 14(2), 95–116 (1949)

    Article  MathSciNet  Google Scholar 

  14. Milgram, S.: The Small World Problem. Psychology Today 2, 60–67 (1967)

    Google Scholar 

  15. Ranu, S., Singh, A.K.: Graphsig: A scalable approach to mining significant subgraphs in large graph databases. In: Proceedings of the 2009 IEEE International Conference on Data Engineering, pp. 844–855. IEEE Computer Society, Washington, DC, USA (2009)

    Chapter  Google Scholar 

  16. Saigo, H., Krämer, N., Tsuda, K.: Partial least squares regression for graph mining. In: Proceeding of the 14th ACM International Conference on Knowledge Discovery and Data Mining, pp. 578–586. ACM, New York (2008)

    Google Scholar 

  17. Seidman, S.B.: Network structure and minimum degre. Social Networks 5, 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  18. Tao, Y., Papadias, D., Lian, X.: Reverse knn search in arbitrary dimensionality. In: Proceedings of the 30th International Conference on Very Large Data Bases, pp. 744–755. Very Large Data Bases Endowment (2004)

    Google Scholar 

  19. Thoma, M., Cheng, H., Gretton, A., Han, J., Peter Kriegel, H., Smola, A., Song, L., Yu, P.S., Yan, X., Borgwardt, K.: Near-optimal supervised feature selection among frequent subgraphs. In: SIAM Int’l Conf. on Data Mining (2009)

    Google Scholar 

  20. Thomason, B.E., Coffman, T.R., Marcus, S.E.: Sensitivity of social network analysis metrics to observation noise. In: IEEE Aerospace Conference, pp. 3206–3216 (2004)

    Google Scholar 

  21. University of Michigan: The origin of power-laws in internet topologies revisited. Web page, http://topology.eecs.umich.edu/data.html

  22. Wang, H., He, H., Yang, J., Yu, P.S., Yu, J.X.: Dual labeling: Answering graph reachability queries in constant time. In: Proceedings of the 22nd International Conference on Data Engineering, p. 75. IEEE Computer Society, Washington, DC, USA (2006)

    Google Scholar 

  23. Yan, X., Cheng, H., Han, J., Yu, P.S.: Mining significant graph patterns by leap search. In: Proceedings of the 2008 ACM International Conference on Management of Data, pp. 433–444. ACM, New York (2008)

    Google Scholar 

  24. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximating graph edit distance. Proc. VLDB Endow. 2, 25–36 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhu, L., Ng, W.K., Han, S. (2011). Classifying Graphs Using Theoretical Metrics: A Study of Feasibility. In: Xu, J., Yu, G., Zhou, S., Unland, R. (eds) Database Systems for Adanced Applications. DASFAA 2011. Lecture Notes in Computer Science, vol 6637. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20244-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20244-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20243-8

  • Online ISBN: 978-3-642-20244-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics