Skip to main content

Boolean Threshold Networks: Virtues and Limitations for Biological Modeling

  • Chapter

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 11))

Abstract

Boolean threshold networks have recently been proposed as useful tools to model the dynamics of genetic regulatory networks, and have been successfully applied to describe the cell cycles of S. cerevisiae and S. pombe. Threshold networks assume that gene regulation processes are additive. This, however, contrasts with the mechanism proposed by S. Kauffman in which each of the logic functions must be carefully constructed to accurately take into account the combinatorial nature of gene regulation. While Kauffman Boolean networks have been extensively studied and proved to have the necessary properties required for modeling the fundamental characteristics of genetic regulatory networks, not much is known about the essential properties of threshold networks. Here we study the dynamical properties of these networks with different connectivities, activator-repressor proportions, activator-repressor strengths and different thresholds. Special attention is paid to the way in which the threshold value affects the dynamical regime in which the network operates and the structure of the attractor landscape. We find that only for a very restricted set of parameters, these networks show dynamical properties consistent with what is observed in biological systems. The virtues of these properties and the possible problems related with the restrictions are discussed and related to earlier work that uses these kind of models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glass, L., Kauffman, S.A.: The logical analysis of continous, nonlinear biochemical control networks. J. Theor. Biol. 39, 103–129 (1973)

    Article  Google Scholar 

  2. Tyson, J.J., Chen, K.C., Novak, B.: Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Op. Cell Biol. 15, 221–231 (2003)

    Article  Google Scholar 

  3. Tyson, J.J., Chen, K.C., Novak, B.: Network dynamics and cell physiology. Nature Rev. Mol. Cell Biol., 908–916 (2001)

    Google Scholar 

  4. Bornholdt, S.: Systems biology: Less is more in modeling large genetic networks. Science 310(5747), 449–451 (2005)

    Article  Google Scholar 

  5. Albert, R., Othmer, H.G.: ...but no kinetic details are needed. SIAM News 36(10) (December 2003)

    Google Scholar 

  6. Wang, R., Albert, R.: Discrete dynamic modeling of cellular signaling networks. In: Johnson, B.M.L., Brand, L. (eds.) Methods in Enzymology 476: Computer Methods, pp. 281–306. Academic Press, London (2009)

    Google Scholar 

  7. Albert, R., Toroczkai, Z., Toroczkai, Z.: Boolean modeling of genetic networks. In: Ben-Naim, E., Frauenfelder, H., Toroczkai, Z. (eds.) Complex Networks. Springer, Heidelberg (2004)

    Google Scholar 

  8. Aldana-Gonzalez, M., Coppersmith, S., Kadanoff, L.P.: Boolean Dynamics with Random Couplings. In: Kaplan, E., Marsden, J.E., Sreenivasan, K.R. (eds.) Perspectives and Problems in Nonlinear Science. A celebratory volule in honor of Lawrence Sirovich. Springer Applied Mathematical Sciences Series, pp. 23–89 (2003)

    Google Scholar 

  9. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  10. Kauffman, S.A.: The Origins of Order: Self-organization and selection in evolution. Oxford University Press, Oxford (1993)

    Google Scholar 

  11. Mendoza, L., Thieffry, D., Alvarez-Buylla, E.R.: Genetic control of flower morphogenesis in Arabidopsis Thaliana: a logical analysis. Bioinformatics 15, 593–606 (1999)

    Article  Google Scholar 

  12. Espionza-Soto, C., Padilla-Longoria, P., Alvarez-Buylla, E.R.: A gene regulatory network model for cell-fate determination during Arabidopsis Thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell. 16, 2923–2939 (2004)

    Article  Google Scholar 

  13. Albert, R., Othmer, H.G.: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol. 23, 1–18 (2003)

    Article  MathSciNet  Google Scholar 

  14. Mendoza, L.: A network model for the control of the differentiation process in Th cells. BioSystems 84, 101–114 (2006)

    Article  Google Scholar 

  15. Li, F., Long, T., Lu, Y., Ouyang, Q., Tang, C.: The yeast cell-cycle network is robustly designed. Proc. Natl. Acad. Sci. USA 101, 4781–4786 (2004)

    Article  Google Scholar 

  16. Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE 3(2), e1672 (2008)

    Article  Google Scholar 

  17. Perissi, V., Jepsen, K., Glass, C.K., Rosenfeld, M.G.: Deconstructing repression: evolving models of co-repressor action. Nature Reviews Genetics 11, 109–123 (2010)

    Article  Google Scholar 

  18. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 7, 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  19. Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation. Santa Fe Institute Studies in the Science of Complexity. Addison-Wesley, Reading (1991)

    Google Scholar 

  20. Bornholdt, S.: Boolean network models of cellular regulation: prospects and limitations. J. R. Soc. Interface 5, S85–S94 (2008)

    Article  Google Scholar 

  21. Kürten, K.E.: Critical phenomena in model neural networks. Phys. Lett. A 129, 157–160 (1988)

    Article  MathSciNet  Google Scholar 

  22. Rohlf, T., Bornholdt, S.: Criticality in random threshold networks: annealed approximation and beyond. Physica A 310, 245–259 (2002)

    Article  MATH  Google Scholar 

  23. Aldana, M., Larralde, H.: Phase transitions in scale-free neural networks: Departure for the standard mean-field universality class. Phys. Rev. E 70, 066130 (2004)

    Article  Google Scholar 

  24. Rohlf, T.: Critical line in random threshold networks with inhomogeneous thresholds. Phys. Rev. E 78, 066118 (2008)

    Article  MathSciNet  Google Scholar 

  25. Kürten, K.E.: Correspondance between neural threshold networks and Kauffman Boolean cellular automata. J. Phys. A 21, L615-L619 (1988)

    Google Scholar 

  26. Derrida, B.: Dynamical phase transition in nonsymmetric spin glasses. J. Phys. A: Math. Gen. 20, L721-L725 (1987)

    Google Scholar 

  27. Szejka, A., Mihaljev, T., Drossel, B.: The phase diagram of random threshold networks. New Journal of Physics 10, 063009 (2008)

    Article  Google Scholar 

  28. Derrida, B., Pomeau, Y.: Random networks of automata: a simple annealed approximation. Europhys. Lett. 1(2), 45–49 (1986)

    Article  MATH  Google Scholar 

  29. Moreira, A.A., Amaral, L.A.N.: Canalyzing Kauffman networks: Nonergodicity and its effect on their critical behavior. Phys. Rev. Lett. 94, 0218702 (2005)

    Article  Google Scholar 

  30. Serra, R., Villani, M., Graudenzi, A., Kauffman, S.A.: Why a simple model of genetic regulatory networks describes the distribution of avalanches in gene expression data. J. Theor. Biol. 246, 449–460 (2007)

    Article  MathSciNet  Google Scholar 

  31. Serra, R., Villani, M., Semeria, A.: Genetic network models and statistical properties of gene expression data in knock-out experiments. J. Theor. Biol. 227, 149–157 (2004)

    Article  MathSciNet  Google Scholar 

  32. Shmulevich, I., Kauffman, S., Aldana, M.: Eukaryotic cells are dynamically ordered or critical but not chaotic. Proc. Natl. Acad. Sci. USA 102, 13439–13444 (2005)

    Article  Google Scholar 

  33. Nykter, M., Price, N.D., Aldana, M., Ramley, S.A., Kauffman, S.A., Hood, L.E., Yli-Harja, O., Shmulevich, I.: Gene expression dynamics in the macrphage exhibit criticality. Proc. Natl. Acad. Sci. USA 105(6), 1897–1900 (2008)

    Article  Google Scholar 

  34. Balleza, E., Alvarez-Buylla, E.R., Chaos, A., Kauffman, S., Shmulevich, I., Aldana, M.: Critical dynamics in genetic regulatory networks: Examples from four kingdoms. PLoS ONE 3(6), e2456 (2008)

    Article  Google Scholar 

  35. Derrida, B., Weisbuch, G.: Evolution of overlaps between configurations in random Boolean networks. J. Phys. (Paris) 47, 1297–1303 (1986)

    Google Scholar 

  36. Aldana, M.: Boolean dynamics of networks with scale-free topology. Physica D 185, 45–66 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kesseli, J., Rämö, P., Yli-Harja, O.: Iterated maps for annealed Boolean networks. Phys. Rev. E 74, 046104 (2006)

    Article  Google Scholar 

  38. Greil, F., Drossel, B.: Kauffman networks with threshold functions. Eur. Phys. J. B 57, 109–113 (2007)

    Article  Google Scholar 

  39. Kauffman, S.A.: Requirements for evolvability in complex systems: orderly dynamics and frozen components. Physica D 42(1-3), 135–152 (1990)

    Article  Google Scholar 

  40. Aldana, M., Balleza, E., Kauffman, S.A., Resendiz, O.: Robustness and evolvability in genetic regulatory networks. J. Theor. Biol. 245, 433–448 (2007)

    Article  MathSciNet  Google Scholar 

  41. Gama-Castro1, S., Jiménez-Jacinto, V., Peralta-Gil, M., Santos-Zavaleta, A., Peñaloza-Spinola, M.I., Contreras-Moreira, B., Segura-Salazar, J., Muñiz-Rascado, L., Martínez-Flores, I., Salgado, H., Bonavides-Martínez, C., Abreu-Goodger, C., Rodríguez-Penagos, C., Miranda-Ríos, J., Morett, E., Merino, E., Huerta, A.M., Treviño-Quintanilla, L., Collado-Vides, J.: RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. Nucleic Acids Research 36, D120-D124 (2008)

    Google Scholar 

  42. Braunewell, S., Bornholdt, S.: Superstability of the yeast cell-cycle dynamics: Ensuring causality in the presence of biochemical stochasticity. J. Theor. Biol. 245, 638–643 (2007)

    Article  MathSciNet  Google Scholar 

  43. Szejka, A., Drossel, B.: Evolution of Boolean networks under selection for a robust response to external inputs yields an extensive neutral space. Phys. Rev. E 81, 021908 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zañudo, J.G.T., Aldana, M., Martínez-Mekler, G. (2011). Boolean Threshold Networks: Virtues and Limitations for Biological Modeling. In: Niiranen, S., Ribeiro, A. (eds) Information Processing and Biological Systems. Intelligent Systems Reference Library, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19621-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19621-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19620-1

  • Online ISBN: 978-3-642-19621-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics