Skip to main content

Specializations and Generalizations of the Stackelberg Minimum Spanning Tree Game

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6484))

Abstract

The Stackelberg Minimum Spanning Tree (StackMST) game is a network pricing (bilevel) optimization problem. The game is played by two players on a graph G = (V,E), whose edges are partitioned into two sets: a set R of red edges (inducing a spanning tree of G) with a fixed non-negative real cost, and a set B of blue edges which are instead priced by a leader. This is done with the final intent of maximizing a revenue that will be returned for their purchase by a follower, whose goal in turn is to select a minimum spanning tree of G. StackMST is known to be APX-hard already when the number of distinct red costs is 2, as well as min {k, 1 + ln β, 1 + ln ρ}-approximable, where k is the number of distinct red costs, β is the number of blue edges selected by the follower in an optimal pricing, and ρ is the maximum ratio between red costs. In this paper we analyze some meaningful specializations and generalizations of StackMST, which shed some more light on the computational complexity of the game. More precisely, we first show that if G is complete, then the following holds: (i) if there are only 2 distinct red costs, then the problem can be solved optimally (this contrasts with the corresponding APX-hardness of the general problem); (ii) otherwise, the problem can be approximated within 7/4 + ε, for any ε> 0. Afterwards, we define a natural extension of StackMST, namely that in which blue edges have a non-negative activation cost associated, and the leader has a global activation budget that must not be exceeded, and, after showing that the very same approximation ratio as that of the original game can be achieved, we prove that if the spanning tree induced by the red edges has radius h (in terms of number of edges), then the problem admits a (2h + ε)-approximation algorithm.

This work was partially supported by the PRIN 2008 research project COGENT (COmputational and GamE-theoretic aspects of uncoordinated NeTworks), funded by the Italian Ministry of Education, University, and Research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biló, D., Gualà, L., Proietti, G., Widmayer, P.: Computational aspects of a 2-player Stackelberg shortest paths tree game. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 251–262. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Biló, D., Gualà, L., Proietti, G.: Hardness of an asymmetric 2-player Stackelberg network pricing game. In: Electronic Colloquium on Computational Complexity (ECCC), TR09-112 (November 3, 2009)

    Google Scholar 

  3. Briest, P., Hoefer, M., Krysta, P.: Stackelberg network pricing games. In: Proc. of the 25th Ann. Symp. on Theoretical Aspects of Computer Science (STACS), pp. 133–142 (2008), http://drops.dagstuhl.de/opus/volltexte/2008/1340

  4. Briest, P., Hoefer, M., Gualà, L., Ventre, C.: On stackelberg pricing with computationally bounded consumers. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 42–54. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Cardinal, J., Demaine, E.D., Fiorini, S., Joret, G., Langerman, S., Newman, I., Weimann, O.: The Stackelberg minimum spanning tree game. Algorithmica (2009), doi:10.1007/s00453-009-9299-y

    Google Scholar 

  6. Cardinal, J., Demaine, E.D., Fiorini, S., Joret, G., Newman, I., Weimann, O.: The Stackelberg minimum spanning tree game on planar and bounded-treewidth graphs. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 125–136. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Grigoriev, A., van Hoesel, S., van der Kraaij, A., Uetz, M., Bouhtou, M.: Pricing network edges to cross a river. In: Persiano, G., Solis-Oba, R. (eds.) WAOA 2004. LNCS, vol. 3351, pp. 140–153. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Joret, G.: Stackelberg network pricing is hard to approximate (2009) (manuscript)

    Google Scholar 

  9. Labbé, M., Marcotte, P., Savard, G.: A bilevel model of taxation and its application to optimal highway pricing. Management Science 44(12), 608–622 (1998)

    MATH  Google Scholar 

  10. Roch, S., Savard, G., Marcotte, P.: An approximation algorithm for Stackelberg network pricing. Networks 46(1), 57–67 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. van Hoesel, S.: An overview of Stackelberg pricing in networks, Research Memoranda 042, Maastricht: METEOR, Maastricht Research School of Economics of Technology and Organization (2006)

    Google Scholar 

  12. von Stackelberg, H.: Marktform und Gleichgewicht (Market and Equilibrium). Verlag von Julius Springer, Vienna (1934)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bilò, D., Gualà, L., Leucci, S., Proietti, G. (2010). Specializations and Generalizations of the Stackelberg Minimum Spanning Tree Game. In: Saberi, A. (eds) Internet and Network Economics. WINE 2010. Lecture Notes in Computer Science, vol 6484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17572-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17572-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17571-8

  • Online ISBN: 978-3-642-17572-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics