Skip to main content

Pennisetum

  • Chapter
  • First Online:

Abstract

In this chapter, we put emphasis on some insights in genetics, genomics, and evolution of wild/crop complex of species of the genus Pennisetum.

The domestication process as it occurred in the primary gene pool of Pennisetum glaucum is the main thread of this chapter. Indeed, it is currently understood that the challenges and hopes for sustainable uses of genetic resources are by far dependent on the understanding of the dynamics of biodiversity, considered from genes to eco/agrosystems. Domestication is one of the most important technological innovations in human history. Humans and the Poaceae family, to which the Pennisetum genus belongs, are interdependent. The appropriate paradigm for the study of domestication process is necessarily based on a multidisciplinary approach (genetics, cytogenetics, genomics, physiology, archeology, basic botany, anthropology, economic botany, agronomy, etc.). The genus Pennisetum offers favorable conditions to address this issue. Indeed, the occurrence of the domesticated P. glaucum in sympatric or parapatric situations with wild relatives in the Sahelian region is a unique situation for the implementation of the above mentioned paradigm. This chapter addresses three main questions (1) The Structure and evolutionary relationships within Pennisetum complex of species; (2) Domestication process hallmarks in the genus Pennisetum; and (3) Enhancement of genetic resources using genes from wild Pennisetum relatives. Prospects and scope of research, on the role of wild relatives to unravel, from evolutionary point of view, the mechanisms underlying plant adaptation and plasticity, are discussed too. Indeed, this issue could significantly help to uncloak the genetic architecture of the useful traits and then to monitor efficiently wide transfer of genes.

This chapter has been contributed by lead contributors, Thierry Robert, Valerie Poncet, and Aboubakry Sarr.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams JM (1997) Preliminary vegetation maps of the world since the last glacial maximum: an aid to archaeological understanding. J Archaeol Sci 24:623–647

    Article  Google Scholar 

  • Akiyama Y, Conner JA, Goel S, Morishige DT, Mullet JE, Hanna WW, Ozias-Akins P (2004) High-resolution physical mapping in Pennisetum squamulatum reveals extensive chromosomal heteromorphism of the genomic region associated with apomixis. Plant Physiol 134:1733–1741

    Article  CAS  PubMed  Google Scholar 

  • Akiyama Y, Hanna WW, Ozias-Akins P (2005) High-resolution physical mapping reveals that the apospory-specific genomic region (ASGR) in Cenchrus ciliaris is located on a heterochromatic and hemizygous region of a single chromosome. Theor Appl Genet 111:1042–1051

    Article  CAS  PubMed  Google Scholar 

  • Akiyama Y, Goel S, Chen Z, Hanna W, Ozias-Akins P (2006) Pennisetum squamulatum: is the predominant cytotype hexaploid or octoploid? J Hered 97:521–524

    Article  PubMed  Google Scholar 

  • Allinne C, Mariac C, Vigouroux Y, Bezançon G, Couturon E, Moussa D, Tidjani M, Pham JL, Robert T (2008) Role of seed flow on the pattern and dynamics of pearl millet (Pennisetum glaucum [L.] R. Br.) genetic diversity assessed by AFLP markers: a study in south-western Niger. Genetica 133:167–178

    Article  CAS  PubMed  Google Scholar 

  • Amblard S, Pernès J (1989) The identification of cultivated pearl millet (Pennisetum) amongst plant impressions on pottery from Oued Chebbi (Dhar Oualata, Mauritania). Afr Archaeol Rev 7:117–126

    Article  Google Scholar 

  • Amoukou AI, Marchais L (1993) Evidence of a partial reproductive barrier between wild and cultivated pearl millets (Pennisetum glaucum). Euphytica 67:19–26

    Article  Google Scholar 

  • Amouroux-Pezas C (1985) B Chromosomes occurrence in a wild Pennisetum form (P. violaceum) : Behaviour and transferring strategies into domesticated pearl millet inbred lines. PhD Thesis. Paris XI University, France. (Orsay) ( Les chromosomes B du mil: leur gestion dans une forme spontanée Pennisetum violaceum et leur transfert dans des lignées cultivées. Thèse docteur 3ème cycle Orsay, France

    Google Scholar 

  • Anderson WF, Dien BS, Brandon SK, Peterson JD (2008a) Assessment of bermudagrass and bunch grasses as feedstock for conversion to ethanol. Appl Biochem Biotechnol 145:13–21

    Article  CAS  PubMed  Google Scholar 

  • Anderson WF, Casler MD, Baldwin BS (2008b) Improvement of perennial forage species as feedstock for bioenergy. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, Berlin

    Google Scholar 

  • Anderson WF, Hubbard RK, Strickland TC (2008c) Napier grass as a field border and bioenergy source. In: Proceedings of joint annual meeting of the Georgia Chapters SWCS, ASABE, and IECA, Athens, GA, USA

    Google Scholar 

  • Antonovics J, Bradshaw AD (1970) Evolution in closely adjacent plant populations. VIII. Clinal patterns at a mine boundary. Heredity 25:349–362

    Article  Google Scholar 

  • Appa Rao S, de Wet JMJ (1999) Taxonomy and evolution. In: Khairwal IS, Rai KN, Andrews DJ, Harinarayana G (eds) Pearl millet breeding. Science, Enfield, NH, USA, pp 29–47

    Google Scholar 

  • Avdulov NP (1931) Karyo-systematische untersuchungen der familie gramineen. Bull Appl Bot Genet Plant Breed Suppl 44:1–428

    Google Scholar 

  • Ballouche A, Neumann K (1995) A new contribution to the Holocene vegetation history of the West African Sahel: pollen from Oursi, Burkina Faso and charcoal from three sites in Northeast Nigeria. Veg Hist Archaeobot 4:31–39

    Article  Google Scholar 

  • Bellwood P (2001) Early agriculturalist population diasporas? Farming, languages, and genes. Annu Rev Anthropol 30:181–207

    Article  Google Scholar 

  • Bertin I, Zhu JH, Gale MD (2005) SSCP-SNP in pearl millet-a new marker system for comparative genetics. Theor Appl Genet 110(8):1467–1472

    Article  CAS  PubMed  Google Scholar 

  • Bidinger FR, Nepolean T, Hash CT, Yadav RS, Howarth CJ (2007) Quantitative trait loci for grain yield in pearl millet under variable postflowering moisture conditions. Crop Sci 47:969–980

    Article  Google Scholar 

  • Boudry P, Mörchen M, Saumitou-Laprade P, Vernet P, Van Dijk H (1993) The origin and evolution of weed beets: consequences for the breeding and release of herbicide resistant transgenic sugar beets. Theor Appl Genet 87:471–478

    Article  Google Scholar 

  • Bramel-Cox P, Andrews DJ, Frey KJ (1986) Exotic germplasm for improving grain yield and growth rate in pearl millet. Crop Sci 26:687–693

    Article  Google Scholar 

  • Brunken JN (1977) A systematic study of Pennisetum sect Pennisetum (Gramineae). Am J Bot 64(2):161–176

    Article  Google Scholar 

  • Brunken JN, de Wet JMJ, Harlan JR (1977) The morphology and domestication of pearl millet. Econ Bot 31:163–174

    Article  Google Scholar 

  • Budak H, Pedraza F, Cregan PB, Baenziger PS, Dweikat I (2003) Development and utilization of SSRs to estimate the degree of genetic relationships in a collection of pearl millet germplasm. Crop Sci 43:2284–2290

    Article  CAS  Google Scholar 

  • Burson BL, Young BA (2001) Breeding and improvement of tropical grasses. In: Sotomayor-Rios A, Pitman WD (eds) Tropical forage plants: development and use. CRC, Boca Raton, FL, USA, pp 59–80

    Google Scholar 

  • Busso CS, Devos KM, Ross G, Mortimore M, Adams WM, Ambrose MJ, Alldrick S, Gale MD (2000) Genetic diversity within and among landraces of pearl millet (Pennisetum glaucum) under farmer management in West-Africa. Genet Resour Crop Evol 47:561–568

    Article  Google Scholar 

  • Camps G (1974) Northen Africa and Saharan Prehistoric Civilisations(Les civilisations préhistoriques de l'Afrique du Nord et du Sahara). Doin Ed, Paris

    Google Scholar 

  • Cavalli-Sforza LL, Menozzi P, Piazza A (1994) The history and geography of human genes. Princeton University Press, Princeton, NJ, USA

    Google Scholar 

  • Chandra-Shekara AC, Prasanna BM, Singh BB, Unnikrishnan KV, Seetharam A (2007) Effect of cytoplasm-nuclear interaction on combining ability and heterosis for agronomic traits in pearl millet {Pennisetum glaucum (L.) R. Br.}. Euphytica 153:15–26

    Article  Google Scholar 

  • Chiavarino AM, Rosato M, Rosi P, Poggio L, Naranjo CA (1998) Localization of the genes controlling B chromosome transmission rate in maize (Zea mays ssp. mays, Poaceae). Am J Bot 85:1581–1585

    Article  CAS  Google Scholar 

  • Chiavarino AM, González-Sánchez M, Poggio L, Puertas MJ, Rosato M, Rosi P (2001) Is maize B chromosome preferential fertilisation controlled by a single gene? Heredity 86:743–748

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury MKV, Smith RL (1988) Mitochondrial DNA variation in pearl millet and related species. Theor Appl Genet 76:25–32

    Article  CAS  Google Scholar 

  • Clayton WD, Renvoize SA (1986) Genera Graminum: grasses of the world. HMSO Book, London, UK, 389 p

    Google Scholar 

  • Clegg MT, Rawson JRY, Thomas K (1984) Chloroplast DNA variation in pearl millet and related species. Genetics 106:449–461

    CAS  PubMed  Google Scholar 

  • Conner JA, Goel S, Gunawan G, Cordonnier-Pratt MM, Johnson VE, Liang C, Wang H, Pratt LH, Mullet JE, Debarry J, Yang L, Bennetzen JL, Klein PE, Ozias-Akins P (2008) Sequence analysis of bacterial artificial chromosome clones from the apospory-specific genomic region of Pennisetum and Cenchrus. Plant Physiol 147:1396–1411

    Article  CAS  PubMed  Google Scholar 

  • D'Andrea AC, Casey J (2002) Pearl millet and Kintampo subsistence. Afr Archaeol Rev 19:147–173

    Article  Google Scholar 

  • D'Andrea AC, Klee M, Casey J (2001) Archaeobotanical evidence for pearl millet (Pennisetum glaucum) in sub-Saharan West Africa. Antiquity 75:341–348

    Google Scholar 

  • Darlington CD (1956) Chromosome botany. George Allen and Unwin, London, UK

    Google Scholar 

  • De Paepe R, Prat D, Knight J (1983) Effects of consecutive androgeneses on morphology and fertility in Nicotiana sylvestris. Can J Bot 61(7):2038–2046

    Google Scholar 

  • Devos KM, Pittaway TS, Busso CS, Gale MD, Witcombe JR, Hash CT (1995) Molecular tools for the pearl millet nuclear genome. Int Sorghum Millets Newsl 36:64–65

    Google Scholar 

  • Devos KM, Pittaway TS, Reynolds A, Gale MD (2000) Comparative mapping reveals a complex relationship between the pearl millet genome and those of foxtail millet and rice. Theor Appl Genet 100:190–198

    Article  CAS  Google Scholar 

  • Doebley J, Stec A (1993) Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics 134:559–570

    CAS  PubMed  Google Scholar 

  • Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51:127–128

    Article  PubMed  Google Scholar 

  • Donadio S, Giussani LM, Kellogg EA, Zuloaga FO, Morrone O (2009) A preliminary molecular phylogeny of Pennisetum and Cenchrus (Poaceae-Paniceae) based on the trnL-F, rpl16 chloroplast markers. Taxon 58:392–404

    Google Scholar 

  • Dorweiler J, Stec A, Kermicle J, Doebley J (1993) Teosinte glume architecture 1: a genetic locus controlling a key step in maize evolution. Science 262(5131):233–235

    Article  CAS  PubMed  Google Scholar 

  • Doust AN, Kellogg EA (2002) Inflorescence diversification in the panicoid “bristle grass” clade (Paniceae, Poaceae): evidence from molecular phylogenies and developmental morphology. Am J Bot 89:1203–1222

    Article  Google Scholar 

  • Doust AN, Penly AM, Jacobs SWL, Kellogg EA (2007) Congruence, conflict, and polyploidization shown by nuclear and chloroplast markers in the monophyletic “bristle clade” (Paniceae, Panicoideae, Poaceae). Syst Bot 32:531–544

    Article  Google Scholar 

  • Dujardin M, Hanna WW (1984) Cytogenetics of double cross hybrids between Pennisetum americanumP. purpureum amphiploids and P. americanum × Pennisetum squamulatum interspecific hybrids. Theor Appl Genet 69:97–100

    Article  Google Scholar 

  • Dujardin M, Hanna WW (1985) Cytology and reproductive behavior of pearl millet – Napier grass hexaploids × Pennisetum squamulatum trispecific hybrids. J Hered 76:382–384

    Google Scholar 

  • Dujardin M, Hanna WW (1987) Inducing male fertility in crosses between pearl millet and Pennisetum orientale Rich. Crop Sci 27:65–68

    Article  Google Scholar 

  • Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann Bot (Lond) 100:903–924

    Article  Google Scholar 

  • Fuller D, Korisettar R, Vankatasubbaiah PC, Jones MK (2004) Early plant domestications in southern India: some preliminary archaeobotanical results. Veg Hist Archaeobot 13:115–129

    Article  Google Scholar 

  • Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95:881–894

    Article  CAS  Google Scholar 

  • Gepts P, Clegg M (1989) Genetic diversity in pearl millet (Pennisetum glaucum [L.] R. Br.) at the DNA sequence level. J Hered 80:203–208

    CAS  Google Scholar 

  • Giussani LM, Cota-Sánchez JH, Zuloaga FO, Kellogg EA (2001) A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C4 photosynthesis. Am J Bot 88:1993–2012

    Article  CAS  Google Scholar 

  • Goel S, Chen Z, Conner JA, Akiyama Y, Hanna WW, Ozias-Akins P (2003) Delineation by fluorescence in situ hybridization of a single hemizygous chromosomal region associated with aposporous embryo sac formation in Pennisetum squamulatum and Cenchrus ciliaris. Genetics 163:1069–1082

    CAS  PubMed  Google Scholar 

  • Goel S, Chen Z, Akiyama Y, Conner JA, Basu M, Gualtieri G, Hanna WW, Ozias-Akins P (2006) Comparative physical mapping of the aposporyspecific genomic region in two apomictic grasses, Pennisetum squamulatum and Cenchrus ciliaris. Genetics 173:389–400

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Martínez R, Culham A (2000) Phylogeny of the subfamily Panicoideae with emphasis on the tribe Paniceae: evidence from the trnL-F cpDNA region. In: Jacobs SWL, Everett J (eds) Grasses: systematics and evolution. CSIRO, Melbourne, Australia, pp 136–140

    Google Scholar 

  • Gonzalez B, Hanna WW (1984) Morphological and fertility responses in isogenic triploid and hexaploid pearl millet × napier grass hybrids. J Hered 75:317–318

    Google Scholar 

  • Greilhuber J, Doležel J, Lysák M, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot 95:255–260

    Article  CAS  PubMed  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Han F, Lamb JC, YuW GZ, Birchler JA (2007) Centromere functional nondisjonction are independent components of the maize B chromosome accumulation mechanism. Plant Cell 19:524–533

    Article  CAS  PubMed  Google Scholar 

  • Hanna WW (1986) Utilization of wild relatives of pearl millet. In: Proceedings of the international pearl millet workshop, 7–11 Apr 1986, ICRISAT, Pattancheru, India

    Google Scholar 

  • Hanna WW (1989) Characteristics and stability of a new cytoplasmic-nuclear male-sterile source in pearl millet. Crop Sci 29:1457–1459

    Article  Google Scholar 

  • Hanna WW (1990) Transfer of germplasm from the secondary to the primary gene pool in pennisetum. Theor Appl Genet 80:200–204

    Article  Google Scholar 

  • Hanna WW (2000) Total and seasonal distribution of dry matter yields for pearl millet × wild grassy subspecies hybrids. Crop Sci 40:1555–1558

    Article  Google Scholar 

  • Hanna WW, Dujardin M (1986) Cytogenetics of Pennisetum schweinfurthii Pilger and its hybrids with pearl millet. Crop Sci 26:449–453

    Article  Google Scholar 

  • Hanna WW, Wells HD (1989) Inheritance of Pyricularia leaf spot resistance in pearl millet. J Hered 80:145–147

    Google Scholar 

  • Hanna WW, Gaines TP, Gonzalez B, Monsoon WG (1984) Effect of ploidy on yield and quality of pearl millet × Napiergrass hybrids. Agron J 76:969–971

    Article  Google Scholar 

  • Hari NS, Jindal J (2009) Assessment of Niaper millet (Pennisetum purpureum × P. glaucum) and sorghum (Sorghum bicolor) trap crops for the management of Chilo partellus on maize. Bull Entomol Res 99:131–137

    Article  CAS  PubMed  Google Scholar 

  • Harlan JR (1971) Agricultural origins: centers and non-centers. Science 14:468–474

    Article  Google Scholar 

  • Harlan JR (1975) Crops and man. American Society of Agronomy and Crop Science Society of America, Madison, WI, USA

    Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Hash CT, Bhasker Raj AG, Lindup S, Sharma A, Beniwal CR, Folkertsma RT, Mahalakshmi V, Zerbini E, Blümmel M (2003) Opportunities for marker-assisted selection (MAS) to improve the feed quality of crop residues in pearl millet and sorghum. Field Crop Res 84:79–88

    Article  Google Scholar 

  • Hillman GC, Davies MS (1990) Domestication rates in wild-type wheats and barley under primitive cultivation. Biol J Linn Soc 39:39–78

    Article  Google Scholar 

  • Hoerandl E, Grossniklaus U, van Dijk P, Sharbel T (eds) (2007) Apomixis: evolution, mechanisms and perspectives. Gantner Verlag, Rugell, Liechtenstein, Germany

    Google Scholar 

  • Ingham LD, Hanna WW, Baier JW, Hannah LC (1993) Origin of the main class of repetitive DNA within selected Pennisetum species. Mol Genet 238:350–358

    Article  CAS  Google Scholar 

  • Jarvis DI, Hodgkin T (1999) Wild relatives and crop cultivars: detecting natural introgression and farmer selection of new genetic combinations in agroecosystems. Mol Ecol 8:S159–S173

    Article  Google Scholar 

  • Jauhar PP (1968) Inter- and intra-genomal chromosome pairing in an inter-specific hybrid and its bearing on the basic chromosome number in Pennisetum. Genetica 39:360–370

    Article  Google Scholar 

  • Jauhar PP (1970) Chromosomes behaviour and fertility of the raw and 'evolved' synthetic tetraploids of pearl millet, Pennisetum typhoides Stapf and Hubb. Genetica 41:407–424

    Article  Google Scholar 

  • Jauhar PP (1981) Cytogenetics and breeding of pearl millet and related species. Alan R Liss, New York, USA, 289 p

    Google Scholar 

  • Jauhar PP, Rai KD, Ozias-Akins P, Chen Z, Hanna WW (2006) Genetic improvement of pearl millet for grain and forage production: cytogenetic manipulation and heterosis breeding. In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering, and crop improvement, vol 2, Cereals. CRC, Taylor & Francis, Boca Raton, FL, USA, pp 281–307

    Google Scholar 

  • Jayalakhsmi K, Pantulu JV (1984) The effect of B-chromosome on A chromosome chiasma formation in pearl millet. Cytologica 49:635–643

    Google Scholar 

  • Joly-Ichenhauser H (1984) Inheritance of domestication syndrome traits in pearl millet Pennisetum typhoides: comparative analysis of F2 and BC progenies from crosses between wild and domesticated forms. PhD Thesis, University of Paris, Orsay (Hérédité du syndrome de domestication chez le mil Pennisetum typhoides: Etude comparée de descendances (F2 et BC) issues de croisements entre plusieurs géniteurs cultivés et spontanés. Thèse de 3ème cycle, Univ Paris, Sud Orsay, France

    Google Scholar 

  • Joly-Ichenhauser H, Sarr A (1985) Preferential associations among characters in crosses between pearl millet (Pennisetum typhoides) and its wild relatives. In: Jacquard P, Heim G, Antonovics J (eds) Genetic differentiation and dispersal in plants. Springer, Berlin, Germany, pp 95–111

    Google Scholar 

  • Jones RN (1985) Are B-chromosomes selfish? In: Cavalier-Smith T (ed) The evolution of genome size. Wiley, Chichester, UK, pp 397–425

    Google Scholar 

  • Jones RN, Puertas MJ (1993) The B-chromosomes of rye (Secale cereale L.). In: Dhir KK, Sareen TS (eds) Frontiers in plant science research. Bhagwati Enterprises, Delhi, India, pp 81–112

    Google Scholar 

  • Jones ES, Liu CJ, Gale MD, Hash CT, Witcombe JR (1995) Mapping quantitative trait loci for downy mildew resistance in pearl millet. Theor Appl Genet 91:448–456

    Article  CAS  Google Scholar 

  • Jones ES, Breese WA, Liu CJ, Singh SD, Shaw DS, Witcombe JR (2002) Mapping quantitative trait loci for resistance to downy mildew in pearl millet: field and glasshouse screens detect the same QTL. Crop Sci 42:1316–1323

    Article  CAS  Google Scholar 

  • Jones RN, Viega W, Houben A (2008) A century of B chromosomes in plants: so what? Ann Bot 101:767–775

    Article  PubMed  Google Scholar 

  • Kayano H (1961) Cytogenetic studies in Lilium callosum III. Preferential segregation of a supernumerary chromosome in EMCs. Proc Jpn Acad 33:553–558

    Google Scholar 

  • Khairwal IS, Hash CT (2007) HHB 67-improved – The first product of marker-assisted crop breeding in India. Asia-Pacific Consortium on Agricultural Biotechnology (APCoAB) e-News. http://www.apcoab.org/special_news.html

  • Khalfallah N (1990) Genetic relationships among wild and cultivated forms belonging to the primary genepool of pearl millet Pennisetum typhoïdes Stapf et Hubb: Assessment of variability using combine cytogenetic and biometrical approaches. Doctor of Science Thesis. Constantine, Algeria 75 p (Les relations génétiques entre formes sauvages et cultivées du pool primaire du mil, Pennisetum typhoïdes Stapf et Hubb. Analyses cytogénétiques et biométriques conjointes de l’organisation de la variabilité. Thèse de doctorat d’Etat Constantine, Algeria 75 p)

    Google Scholar 

  • Khalfallah N, Sarr A, Barghi N, Siljak-Yakovlev S (1988) Evidence of karyotypic particulatities in Pearl Millet (Pennisetum typhoïdes Stapf & Hubb) and their incidence on chromosomal behaviour. Abstract of XVIth International Congress of Genetics, August 20–27, Toronto, Canada. Genome 30 (Suppl 1):284

    Google Scholar 

  • Khalfallah N, Sarr A, Siljak-Yakovlev S (1993) Karyological study of some cultivated and wild stocks of pearl millet from Africa (Pennisetum typhoïdes Stapf et Hubb. and P. violaceum (Lam) L. Rich.). Caryologia 46(2–3):127–138

    Google Scholar 

  • Khan ZR, Amudavi DM, Midega CAO, Wanyama JM, Pickett JA (2008) Farmers’ perceptions of a ‘push–pull’ technology for control of cereal stemborers and Striga weed in western Kenya. Crop Prot 27:976–987

    Article  Google Scholar 

  • Klee M, Zach B, Stika HP (2004) Four thousand years of plant exploitation in the Lake Chad basin (Nigeria), part III: plant impressions in potsherds from the final stone age Gajiganna culture. Veg Hist Archaeobot 13:131–142

    Article  Google Scholar 

  • Klichowska M (1978) Preliminary results of palaeoethnobotanical studies on plant impressions on potsherds from the Neolithic settlement at Kadero, Sudan. Nyame Akuma 12:42–43

    Google Scholar 

  • Kulkarni VN, Rai KN, Dakheel AJ, Ibrahim M, Hebbara M, Vadez V (2006) Pearl millet germplasm adapted to saline conditions. ISMN 47:103–106

    Google Scholar 

  • Lamy F, Martel E, Ricroch A, Robert T, Sarr A (1994) An integrated strategy, including the use of RFLP markers, to optimise the use of genetic resources of the primary gene pool of pearl millet. In: Witcombe JR, Duncan RR (eds) Use of molecular markers in sorghum and pearl millet breeding for developing countries. Overseas Development Administration, London, UK, pp 86–89

    Google Scholar 

  • Le Corre V, Kremer A (2003) Genetic variability at neutral markers, quantitative trait loci and trait in a subdivided population under selection. Genetics 164:1205–1219

    PubMed  Google Scholar 

  • Le Thi K, Lespinasse R, Siljaj-Yakovlev S, Robert T, Khalfallah N, Sarr A (1994) Karyotypic modifications in androgenetic plantlets of pearl millet, Pennisetum glaucum (L.) R. Brunken: occurrence of B chromosomes. Caryologia 47(1):1–10

    Google Scholar 

  • Lespinasse R, De Paepe R, Koulou A (1987) Induction of B chromosomes formation in androgenetic lines of Nicotiana sylvestris. Caryologia 40(4):327–338

    Google Scholar 

  • Li CB, Zhou AL, Sang T (2006) Rice domestication by reducing shattering. Science 311:1936–1939

    Article  CAS  PubMed  Google Scholar 

  • Liu CJ, Witcombe JR, Pittaway TS, Nash M, Busso CS, Hash CT, Gale MD (1994) An RFLP-based genetic map of pearl millet (Pennisetum glaucum). Theor Appl Genet 89:481–487

    CAS  Google Scholar 

  • Marchais L (1994) Wild pearl millet population (Pennisetum glaucum, Poaceae) integrity in agricultural Sahelian areas. An exemple from Keita (Niger). Plant Syst Evol 189:233–245

    Article  Google Scholar 

  • Marchais L, Pernès J (1985) Genetic divergence between wild and cultivated pearl millets (Pennisetum typhoides). I-Male sterility. Z Pflanzenzücht 95:103–112

    Google Scholar 

  • Marchais L, Tostain S (1997) Analysis of reproductive isolation between pearl millet (Pennisetum glaucum (L.) R.Br. and P. ramosum, P. schweinfurthii, P. squamulatum, Cenchrus ciliaris. Euphytica 93:97–105

    Article  Google Scholar 

  • Mariac C, Robert T, Allinne C, Remigereau MS, Luxereau A, Tidjani M, Seyni O, Bezancon G, Pham JL, Sarr A (2006) Genetic diversity and gene flow among pearl millet crop/weed complex: a case study. Theor Appl Genet 113(6):1003–1014

    Article  CAS  PubMed  Google Scholar 

  • Martel E, Ricroch A, Sarr A (1996) Assessment of genome organization among diploid species (2n=2x=14) belonging to primary and tertiary gene pools of pearl millet using fluorescent in situ hybridization with rDNA probes. Genome 39(4):680–687

    Article  CAS  PubMed  Google Scholar 

  • Martel E, De Nay D, Siljak-Yakovlev S, Brown S, Sarr A (1997) Genome size variation and basic chromosome number in pearl millet and fourteen related Pennisetum species. J Hered 88:139–143

    Google Scholar 

  • Martel E, Poncet V, Lamy F, Siljak-Yakovlev S, Lejeune B, Sarr A (2004) Chromosome evolution of Pennisetum species (Poaceae): implication of ITS phylogeny. Plant Syst Evol 249:139–149

    Article  Google Scholar 

  • McCouch SR, Sweeney M, Li J, Jiang H, Thomson M, Septiningsih E, Edwards J, Moncada P, Xiao J, Garris A, Tai T, Martinez C, Tohme J, Sugiono M, McClung A, Yuan LP, Ahn SN (2006) Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa. Euphytica 154:317–339

    Article  CAS  Google Scholar 

  • Miura R, Terauchi R (2005) Genetic control of weediness traits and the maintenance of sympatric crop-weed polymorphism in pearl millet (Pennisetum glaucum). Mol Ecol 14(4):1251–1261

    Article  CAS  PubMed  Google Scholar 

  • Morgan RN, Wilson JP, Hanna WW, Ozais-Akins P (1998) Molecular markers for rust and pyricularia leaf spot disease resistance in pearl millet. Theor Appl Genet 96:413–420

    Article  CAS  Google Scholar 

  • Morjan CL, Rieseberg LH (2004) How species evolve collectively: implications of gene flow and selection for the spread of advantageous alleles. Mol Ecol 13:1341–1356

    Article  CAS  PubMed  Google Scholar 

  • Müntzing A (1958) Accessory chromosomes. Trans Bose Res Inst 22:1–15

    Google Scholar 

  • Mutegi JK, Mugendi DM, Verchot LV, Kung’u JB (2008) Combining Niaper grass with leguminous schrubs in contour hedgerows controls soil erosion without competing with crops. Agrofor Syst 74:37–49

    Article  Google Scholar 

  • Niangado O (1981) Backcross strategy in pearl millet Pennisetum americanum (L.) Leeke improvement: use for cycle adjustement and the enhancement of genetic resources using wild forms of Pennisetum. PhD Thesis, University of Paris-XI, France, (Utilisation de rétrocroisements chez le mil: 1. Pour changer le régime de floraison. 2. Pour exploiter la variabilité génétique des formes spontanées. PhD thesis, Université Paris-XI, Orsay, France)

    Google Scholar 

  • Noyes RD (2008) Sexual devolution in plants: apomixis uncloaked? Bioessays 30:798–801

    Article  CAS  PubMed  Google Scholar 

  • Nur U (1977) Maintenance of a ‘parasitic’ B chromosome in the grasshopper Melanoplus femur-rubrum. Genetics 87:499–512

    CAS  PubMed  Google Scholar 

  • Östergren G (1947) Heterochromatic B chromosomes in Anthoxanthum. Hereditas 33:261–296

    Article  Google Scholar 

  • Oumar I, Mariac C, Pham JL, Vigouroux Y (2008) Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br) as revealed by microsatellite loci. Theor Appl Genet 117:489–497

    Article  CAS  PubMed  Google Scholar 

  • Owino JO, Owido SFO, Chemelil MC (2006) Nutrients in runoff from a clay loam soil protected by narrow grass strips. Soil Till Res 88:116–122

    Article  Google Scholar 

  • Ozias-Akins P (2006) Apomixis: developmental characteristics and genetics. Crit Rev Plant Sci 25:199–214

    Article  Google Scholar 

  • Ozias-Akins P, van Dijk PJ (2007) Mendelian genetics of apomixis in plants. Annu Rev Genet 41:509–537

    Article  CAS  PubMed  Google Scholar 

  • Ozias-Akins P, Roche D, Hanna WW (1998) Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus which may have no allelic form in sexual genotypes. Proc Natl Acad Sci USA 95:5127–5132

    Article  CAS  PubMed  Google Scholar 

  • Ozias-Akins P, Akiyama Y, Hanna WW (2003) Molecular characterization of the genomic region linked with apomixis in Pennisetum/Cenchrus. Funct Integr Genom 3:94–104

    Article  CAS  Google Scholar 

  • Pantulu JV (1960) Accessory chromosomes in Pennisetum typhoides. Curr Sci 29:28–29

    Google Scholar 

  • Pantulu JV, Manga V (1975) Influence of B-chromosomes on meiosis in pearl millet. Genetica 45:237–251

    Article  Google Scholar 

  • Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106(2):239–250

    CAS  PubMed  Google Scholar 

  • Patil BD, Hardas MW, Joshi AB (1961) Auto-alloploid nature of Pennisetum squamulatum Fresen. Nature 189:419–420

    Article  Google Scholar 

  • Peng J, Ronin Y, Fahima T, Röder MS, Li Y, Nevo E, Korol A (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA 100:2489–2494

    Article  CAS  PubMed  Google Scholar 

  • Pernès J (1983) Some genetic statements on domestication process of cereals. La Recherche 146:910–919 (Points de vue génétiques sur la domestication des céréales. La Recherche 146:910–919)

    Google Scholar 

  • Pernès J (1984) Plant genetic resources management, vol 1. ACCT, Paris, France (Gestion de ressources génétiques des plantes. vol 1. ACCT, Paris, France)

    Google Scholar 

  • Pernès J (1985) Crop plant evolution: the case of cereals. Life Sci Proc Gen Ser II 5:429–447 (Evolution des plantes cultivées: l’exemple des cereales.La Vie des Sciences Comptes rendus série générale 5: 429–447)

    Google Scholar 

  • Pernès J (1986) Outbreeding and domestication process in cereals: the case of maize (Zea mays L. and pearl millet Pennisetum americanum L. K. Schum). Bull Soc Bot Fr 133(1):27–34 (L’allogamie et la domestication des céréales: l’exemple du maïs (Zea mays L.) et du mil (Pennisetum americanum L.) K. Schum. Bull Soc Bot Fr 133(1): 27–34)

    Google Scholar 

  • Petit-Maire N (2002) Sahara: under the sand …lakes. A journey through time. CNRS, Paris, France (Sahara: sous le sable...des lacs. Un voyage dans le temps. CNRS edn, Paris, France)

    Google Scholar 

  • Pilate-André S (1992) Study of genetic diversity organization within Pennisetum complexe of species using allozymes markers and adh gene region molecular analysis. PhD Thesis, University of Paris-XI, Orsay, France, 220 p (Etude de l'organisation de la diversité génétique du complexe des mils pénicillaires (Pennisetum spp.) par les marqueurs enzymatiques et par l'analyse moléculaire de la région Adh. Univ Paris-Sud, Orsay, France, 220 p)

    Google Scholar 

  • Pilger RKF (1940) Gramineae III. Unterfamilie Panicoideae. In: Engler A, Prantl K (eds) Die Natürlichen Pflanzenfamilen, edn 2, vol 14e. Engelmann, Leipzig, Germany, pp 1–208

    Google Scholar 

  • Poncet V, Lamy F, Enjalbert J, Joly H, Sarr A, Robert T (1998) Genetic analysis of the domestication syndrome in pearl millet (Pennisetum glaucum L., Poaceae): inheritance of the major characters. Heredity 81:648–658

    Article  Google Scholar 

  • Poncet V, Lamy F, Devos K, Gale M, Sarr A, Robert T (2000) Genetic control of domestication traits in pearl millet (Pennisetum glaucum L., Poaceae). Theor Appl Genet 100:147–159

    Article  CAS  Google Scholar 

  • Poncet V, Martel E, Allouis S, Devos KM, Lamy F, Sarr A, Robert T (2002) Comparative analysis of QTLs affecting domestication traits between two domesticated × wild pearl millet (Pennisetum glaucum L., Poaceae) crosses. Theor Appl Genet 104:965–975

    Article  CAS  PubMed  Google Scholar 

  • Portères R (1950) Vieilles agricultures de l'Afrique intertropicale; centre d'origine et de diverisfication variétale primaire et berceaux d'agriculture antérieurs au XVIème siècle. Agron Trop 5:489–507

    Google Scholar 

  • Prescott-Allen C, Prescott-Allen R (1986) The first resource: wild species in the North American economy. Yale University, New Haven, USA

    Google Scholar 

  • Prescott-Allen C, Prescott-Allen R (1988) Genes from the wild: using wild genetic resources for food and raw materials. International Institute for Environment and Development, London, UK

    Google Scholar 

  • Puertas MJ (2002) Nature and evolution of B chromosomes in plants: a non-coding but information-rich part of plant genomes. Cytogenet Genome Res 96:198–205

    Article  CAS  PubMed  Google Scholar 

  • Puertas MJ, Baeza F, De La Pena A (1986) The transmission of B chromosomes in populations of Secale cereale and Secale vavilovii 1. Offspring obtained from OB and 2B plants. Heredity 57:389–394

    Article  Google Scholar 

  • Puertas MJ, Jiménez MM, Romera F (1993) Rye B chromosome transmission depends on the B, the carrier of the B and the mother of the carrier. In: Sumner AT, Chandley AC (eds) Chromosomes today, vol 11. Chapman and Hall, London, UK, pp 391–399

    Google Scholar 

  • Puertas MJ, Gonzalez-Sanchez M, Manzanero S, Romera F, Jimenez MM (1998) Genetic control of the rate of transmission of rye B chromosomes. IV. Localization of the genes controlling B transmission rate. Heredity 80:209–213

    Article  Google Scholar 

  • Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457(12):843–848

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Lindup S, Pittaway TS, Allouis S, Gale MD, Devos KM (2001) Development of simple sequence repeat markers from bacterial artificial chromosomes without subcloning. Biotechniques 31(2):358–362

    Google Scholar 

  • Qi X, Pittaway TS, Lindup S, Liu H, Waterman E, Padi FK, Hash CT, Zhu J, Gale MD, Devos KM (2004) An integrated genetic map and a new set of simple sequence repeat markers for pearl millet, Pennisetum glaucum. Theor Appl Genet 109(7):1485–1493

    Article  CAS  PubMed  Google Scholar 

  • Rai KN (1995) A new cytoplasmic-nuclear male sterility system in pearl millet. Plant Breed 114:445–447

    Article  Google Scholar 

  • Rai KN, Anand Kumar K, Andrews DJ, Rao AS (2001) Commercial viability of alternative cytoplasmic-nuclear male sterility system in pearl millet. Euphytica 121:107–114

    Article  Google Scholar 

  • Rai KN, Khairwal IS, Dangaria J, Singh AK,·Rao AS (2009) Seed parent breeding effciency of three diverse cytoplasmic-nuclear male-sterility systems in pearl millet. Euphytica 165:495–507

    Google Scholar 

  • Raman VS, Chandrasekharan P, Krishanaswami D (1959) A note on some chromosome numbers in Gramineae. Curr Sci 29:127–128

    Google Scholar 

  • Rao YS, Rao SA, Mengesha MH (1989) New evidence on the phylogeny of basic chromosome number in Pennisetum. Curr Sci 58(15):869–871

    Google Scholar 

  • Rao NK, Reddy LJ, Bramel PJ (2003) Potential of wild species for genetic enhancement of some semi-arid food crops. Genet Resour Crop Evol 50:707–721

    Article  Google Scholar 

  • Renno JF, Winkel T, Bonnefous F, Bezançon G (1997) Experimental study of gene flow between wild and cultivated Pennisetum glaucum. Can J Bot 75:925–931

    Google Scholar 

  • Renno JF, Mariac C, Poteaux C, Bezancon G, Lumaret R (2001) Haplotype variation of cpDNA in the agamic grass complex Pennisetum section Brevivalvula (Poaceae). Heredity 86:537–544

    Article  CAS  PubMed  Google Scholar 

  • Rieseberg LH, Seung-Chul K, Randell RA, Whitney KD, Gross BL, Lexer C, Clay K (2007) Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129:149–165

    Article  PubMed  Google Scholar 

  • Robert T, Sarr A (1992) Multivariate analysis of recombination between wild and cultivated genomes within the primary gene pool of pearl millet (Pennisetum typhoides). Genome 35:208–219

    Google Scholar 

  • Robert T, Lespinasse R, Pernès J, Sarr A (1991) Gametophytic competition as influencing gene flow between wild and cultivated forms of pearl millet (Pennisetum typhoides). Genome 34:195–200

    Google Scholar 

  • Robert T, Lamy F, Sarr A (1992) Evolutionary role of gametophytic selection in the domestication of Pennisetum typhoides (pearl millet): a two-locus asymmetrical model. Heredity 69:372–381

    Google Scholar 

  • Roche DR, Conner JA, Budiman MA, Frisch D, Wing R (2002) Construction of BAC libraries from two apomictic grasses to study the microcolinearity of their apospory-specific genomic regions. Theor Appl Genet 104:804–812

    Article  CAS  PubMed  Google Scholar 

  • Sandmeier M, Beninga M, Pernès J (1981) Analysis of the genetic relationships between wild and cultivated forms of pearl millet III Inheritance of esterases ansd peroxydase isozyme markers. Agronomie 1:486–494 (Analyse des relations entre formes spontanées et cultivées chez le mil à chandelles. III- Etude de l'hérédité des estérases et des peroxydases anodiques. Agronomie 1:486–494)

    Article  Google Scholar 

  • Sarr A, Pernès J (1988) Unravelling segregation distortions for quantitative traits in pearl millet (Pennisetum typhoïdes (Burm) Stapf et Hubb using multivariate statistical analysis. Genome 30:411–422 (Analyses multivariées de descendances de rétrocroisements et mise en évidence de distorsions de ségrégation de caractères quantitatifs chez le mil (Pennisetum typhoides (Burm.) Stapf et Hubb.). Genome 30:411–422)

    Google Scholar 

  • Sarr A, Sandmeier M, Pernes J (1988) Gametophytic competition in pearl millet (Pennisetum Typhoïdes (Burm) Stapf et Hubb.). Genome 30(6):924–929

    Google Scholar 

  • Sarr A, Gale MD, Beninga M, Zangre R, Renno JF, Bezançon G (2001) New strategy including the use of molecular markers to enhance Pennisetum glaucum genetic resources (wild relatives and cultivated forms). Final report, EU Project (ERBTS3*CT940280)

    Google Scholar 

  • Savidan Y (2001) Transfer of apomixis through wide crosses. In: Savidan Y, Carman J, Dresselhaus T (eds) The flowering of apomixis: from mechanisms to genetic engineering. CIMMYT, Mexico, DF; IRD, European Commission DG VI (FAIR), pp 153–167

    Google Scholar 

  • Schmelzer GH, Renno JF (1999) Genotypic variation in progeny of the agamic grass complex Pennisetum section Brevivalvula in West Africa. Plant Syst Evol 215:71–83

    Article  Google Scholar 

  • Senthilvel S, Jayashree B, Mahalakshmi V, Kumar PS, Nakka S, Nepolean T, Hash C (2008) Development and mapping of simple sequence repeat markers for pearl millet from data mining of expressed sequence tags. BMC Plant Biol 8:119

    Article  CAS  PubMed  Google Scholar 

  • Shaw MW, Hewitt GM (1985) The genetic control of meiotic drive acting on the B-chromosome of Myrmeleotettix maculatus (Orthoptera: Acrididae). Heredity 54:187–194

    Article  Google Scholar 

  • Siljak-Yakovlev S (1996) La dysploïdie et l'évolution du caryotype. Bocconea 5:210–220

    Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  CAS  PubMed  Google Scholar 

  • Small E (1984) Hybridization in domesticated-weed-wild complex. In: Grant WF (ed) Plant biosystematics. Academic, Toronto, ON, Canada, pp 195–210

    Google Scholar 

  • Sotomayor-Rios A, Pitman WD (2001) Tropical forage plants: development and use. CRC, Boca Raton, FL, USA

    Google Scholar 

  • Stapf O, Hubbard CE (1934) Pennisetum. In: Prain D (ed) Flora of tropical Africa, vol 9, Part 6. Reeve, Ashford, Kent, UK, pp 954–1070

    Google Scholar 

  • Stebbins GL (1956) Cytogenetics and evolution in the grass family. Am J Bot 43:890–905

    Article  Google Scholar 

  • Subba Rao MV (1980) Inherance of B-chromosomes in pearl millet. Heredity 45(1):1–6

    Article  Google Scholar 

  • Subba Rao MV, Pantulu JV (1978) The effects of derived B-chromosomes on meiosis in pearl millet Pennisetum typhoides. Chromosoma (Berl) 69:121–130

    Article  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Techio VH, Davide LC, Pereira AV (2006) Meiosis in elephant grass (Pennisetum purpureum), pearl millet (P. glaucum) (Poaceae, Poales) and their interspecific hybrids. Gen Mol Biol 29(2):353–362

    Google Scholar 

  • Tostain S (1992) Enzyme diversity in pearl millet (Pennisetum glaucum), wild millet. Theor Appl Genet 83:733–742

    Article  CAS  Google Scholar 

  • Tostain S (1993) Evaluation de la diversité génétique des mils pénicillaires diploïdes (Pennisetum glaucum (L.) R.Br.) au moyen de marqueurs enzymatiques. Etude des relations entre formes sauvages et cultivées. Orsay, France, p 331

    Google Scholar 

  • Tostain S, Marchais L (1989) Enzyme diversity in pearl millet (Pennisetum glaucum) Africa and India. Theor Appl Genet 77:634–664

    Article  Google Scholar 

  • Tostain S, Riandey MF, Marchais L (1987) Enzyme diversity in pearl millet (Pennisetum glaucum). West Africa. Theor Appl Genet 74:188–193

    Article  Google Scholar 

  • Venkateswarlu J, Pantulu JV (1970) The cytological behaviour of B-chromosomes in Pennisetum typhoides. Cytologia 35:444–448

    Google Scholar 

  • Visser NC, Spies JJ, Venter HJT (1998) Aneuploidy in Cenchrus ciliaris (Poaseae, Panicoideae, Paniceae): truth or fiction? S Afr J Bot 64:337–345

    Google Scholar 

  • Vom Brocke K, Christinck A, Weltzien ER, Presterl T, Geiger HH (2003) Farmer’s seed systems and management practices determine pearl millet genetic diversity patterns in semiarid regions of India. Crop Sci 43:1680–1689

    Article  Google Scholar 

  • Wendorf F, Schild R (1994) Are the early Holocene cattle in the eastern Sahara domestic or wild? Evol Anthropol 3:118–128

    Article  Google Scholar 

  • Wendorf F, Schild R (1998) Nabta Playa and its role in Northeastern African prehistory. J Anthropol Archaeol 17:97–123

    Article  Google Scholar 

  • Wendorf F, Close AE, Schild R, Wasylikowa K, Housley RA et al (1992) Saharan exploitation of plants 8,000 years BP. Nature 359:721–724

    Article  Google Scholar 

  • Wetterstrom W (1993) The origins of agriculture in Africa: with particular reference to sorghum and pearl millet. Rev Archaeol – Spl Issue: the transition to agriculture in the Old World 19:30–46

    Google Scholar 

  • Williams E, Barclay P C (1968) The effects of B chromosomes on vigor and fertility in Dactylis hybrids. NZ J Bot 6(4):405–416

    Google Scholar 

  • Wilson JP, Hanna WW (1992) Disease resistance in wild Pennisetum species. Plant Dis 76:1171–1175

    Article  Google Scholar 

  • Wilson JP, Hess DE, Hanna WW (2000) Resistance to Striga hermonthica in wild accessions of the primary gene pool of Pennisetum glaucum. Phytopathology 90:1169–1172

    Article  CAS  PubMed  Google Scholar 

  • Wilson JP, Hess DE, Hanna WW, Kumar KA, Gupta SC (2004) Pennisetum glaucum subsp. monodii accessions with Striga resistance in West Africa. Crop Prot 23:865–870

    Article  Google Scholar 

  • Wood D, Lenné JM (1997) The conservation of agrobiodiversity on-farm: questioning the emerging paradigm. Biodivers Conserv 6:109–129

    Article  Google Scholar 

  • Xiao J, Grandillo S, Ahn SN, McCouch SR, Tanksley SD, Li J, Yuan L (1996) Genes from wild rice improve yield. Nature 384:223–224

    Article  CAS  Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR, Cavan GP, Howarth CJ (2002) Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought-stress conditions. Theor Appl Genet 104:67–83

    Article  CAS  PubMed  Google Scholar 

  • Yadav RS, Bidinger FR, Hash CT, Yadav YP, Yadav OP, Bhatnagar SK, Howarth CJ (2003) Mapping and characterization of QTL × E interactions for traits determining grain and stover yield in pearl millet. Theor Appl Genet 106:512–520

    Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR, Devos KM, Howarth CJ (2004) Genomic regions associated with grain yield and aspects of post-flowering drought tolerance in pearl millet across stress environments and tester background. Euphytica 136:265–277

    Google Scholar 

  • Zach B, Klee M (2003) Four thousand years of plant exploitation in the Chad Basin of NE Nigeria II: discussion on the morphology of caryopses of domesticated Pennisetum and complete catalogue of the fruits and seeds of Kursakata. Veg Hist Archaeobot 12:187–204

    Article  Google Scholar 

Databases

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aboubakry Sarr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robert, T. et al. (2011). Pennisetum . In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14255-0_13

Download citation

Publish with us

Policies and ethics