Skip to main content

Process, Distinction, Groupoids and Clifford Algebras: an Alternative View of the Quantum Formalism

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 813))

Abstract

In this paper we start from a basic notion of process, which we structure into two groupoids, one orthogonal and one symplectic. By introducing additional structure, we convert these groupoids into orthogonal and symplectic Clifford algebras respectively. We show how the orthogonal Clifford algebra, which include the Schrödinger, Pauli and Dirac formalisms, describe the classical light-cone structure of space-time, as well as providing a basis for the description of quantum phenomena. By constructing an orthogonal Clifford bundle with a Dirac connection, we make contact with quantum mechanics through the Bohm formalism which emerges quite naturally from the connection, showing that it is a structural feature of the mathematics. We then generalise the approach to include the symplectic Clifford algebra, which leads us to a non-commutative geometry with projections onto shadow manifolds. These shadow manifolds are none other than examples of the phase space constructed by Bohm. We also argue that this provides us with a mathematical structure that fits the implicate-explicate order proposed by Bohm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The term “movement” is being used, not to describe movements of objects but in a more general sense, implying more subtle orders of change, development and evolution of every kind [14].

  2. 2.

    We assume the real field for convenience and leave open the possibility for a more fundamental structure.

  3. 3.

    Note this immediately gives us an explanation as to why we identify \(\alpha_{0i}\) with the velocity in the Dirac theory.

  4. 4.

    This suggests that these operators could be used to describe the creation and annihilations of extensions.

  5. 5.

    This is essentially the same idea that led to the notion of the anti-particle “going backward in time”, but at this stage we are not considering anti-matter.

  6. 6.

    While I was preparing this article, Aharonov reminded me of the similarity of these ideas to his on pre- and post-selection [36].

  7. 7.

    \(|P_{1}\rangle\) and \(\langle P_{2}|\) are not to be taken as elements in a Hilbert space and its dual.

  8. 8.

    Physicists should not be put off by the notation because the es are exactly the γs used in standard Dirac theory We have changed notation simply to bring out the fact that we do not need to go to a matrix representation, although that possibility is always open to us should we wish to take advantage of it.

  9. 9.

    It should also be noted that these derivatives are related to the sum and differences of the boundary, δ *, and co-boundary, δ operators in the exterior calculus.

  10. 10.

    The results discussed here are for a fixed number of particles. To discuss creation and annihilation of particles we must go to a field theory as discussed in Bohm et al. [54].

References

  1. Bohr, N.: Atomic Physics and Human Knowledge. Science Editions, New York (1961)

    Google Scholar 

  2. Whitehead, A.N.: Process and Reality. Harper & Row, New York (1957)

    Google Scholar 

  3. Bohm, D.: Time, the Implicate Order and Pre-Space. In: Griffin D.R. (ed.) Physics and the Ultimate Significance of Time, pp. 172–208. SUNY Press, New York (1986)

    Google Scholar 

  4. Bohm, D.J., Davies, P.G., Hiley, B.J.: Algebraic QuantumMechanics and Pregeometry. In: Adenier, G., Krennikov, A.Yu., Nieuwenhuizen, Theo. M. (eds.) Quantum Theory: Reconsiderations of Foundations 3, Växjö, Sweden 2005, pp. 314–324, AIP, New York (2006)

    Google Scholar 

  5. Bohm, D., Hiley, B.J.: Generalization of the Twistor to Clifford Algebras as a basis for Geometry, Rev. Briasileira de Fisica, Volume Especial, Os 70 anos de Mario Schönberg (1984) 1–26

    Google Scholar 

  6. Grassmann, G.: A New Branch of Mathematics: The Ausdehnungslehre of 1844 and Other Works, translated by Kannenberg, L.C.. Open Court, Chicago (1995)

    Google Scholar 

  7. Hamilton, W.R.: Mathematical Papers, vol. 3. Algebra, Cambridge (1967)

    Google Scholar 

  8. Hestenes, D.: Spacetime physics with geometric algebra. Am. J. Phys. 71, 691–704 (2003)

    Article  ADS  Google Scholar 

  9. Doran, C., Lasenby, A.: Geometric algebra for physicists. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  10. Rodrigues, Jr., W.A.: Algebraic and dirachestenes spinors and spinor fields. J. Math. Phys. 45, 2908–2944 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Grassmann, G.: ibid. Sections 3 and 4

    Google Scholar 

  12. Demaret, J., Heller, M., Lambert, D.: Local and Global Properties of the world. Foundations Sci. 2, 137–176 (1997)

    Article  Google Scholar 

  13. Kauffman, L.H.: Space and time in computation and discrete physics. Int. J. General Syst. 27, 249–273 (1998)

    Article  MATH  Google Scholar 

  14. Bohm, D.: Fragmentation and Wholeness. The van Leer Jerusalem Foundation, Jerusalem (1976)

    Google Scholar 

  15. Bohm,D., Hiley, B.J., Stuart, A.E.G.: On a new mode of description in physics. Int. J. Theor. Phys. 3, 171–183 (1970)

    Article  Google Scholar 

  16. Brandt, H.: Uber eine Verallgemeinerung des Gruppenbegriffes. Math. Ann. 96, 360–366 (1926)

    Article  Google Scholar 

  17. Bohm, D.: >Space, time, and the quantum theory understood in terms of discrete structural process. In: Proc. Int. Conf. on Elementary Particles, Kyoto, pp. 252–287 (1965)

    Google Scholar 

  18. Eddington, A.S.: The Philosophy of Physical Science. Ann Arbor Paperback, University of Michigan Press, Michigan (1958)

    Google Scholar 

  19. Lounesto, P.: Clifford Algebras and Spinors. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  20. Penrose, R.: Twistor algebra. J. Math. Phys. 8, 345–366 (1967)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Frescura, F.A.M., Hiley, B.J.: The implicate order, algebras, and the spinor. Found Phys. 10, 7–31 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  22. Hiley, B.J., Monk, N.: Quantum phase space and the discrete weyl algebra. Mod. Phys. Lett. A8, 3225–3233 (1993)

    MathSciNet  Google Scholar 

  23. Kauffman, L.H.: Special relativity and a calculus of distinctions. In: Proceedings of the 9th International Meeting of ANPA, pp. 291–312, Cambridge, ANPA West, Palo Alto, Cal (1987)

    Google Scholar 

  24. Griffor, A.: From strings to clifford algebras. In: Bowden, K.G. (ed.) Implications: Scientific Aspects of AHPA 22, pp. 30–55 (2001)

    Google Scholar 

  25. Brown, R.: From groups to groupoids: A brief survey. London Math. Soc. 19, 113–134 (1987)

    Article  MATH  Google Scholar 

  26. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of the 19th IEEE conference on Logic in Computer Science (LiCS’04). IEEE Computer Science Press (2004). Also quant-ph/0402130q-ph/0402130

    Google Scholar 

  27. Raptis, I., Zapatrin, R.R.: Algebraic description of spacetime foam. Classical Quantum Gravity 20, 4187–4205 (2001). gr-qc/9904079

    Article  MathSciNet  ADS  Google Scholar 

  28. Schönberg, M.: Quantum kinematics and geometry. Nuovo Cimento VI, 356–380 (1957)

    Google Scholar 

  29. Fernandes, M.: Geometric Algebras and the Foundations of Quantum Theory. PhD Thesis, London University (1995)

    Google Scholar 

  30. Kauffman, K.L.: Sign and space. In: Religious Experience and Scientific Paradigms, Proceedings of the IAWSR Conf., Inst, Adv. Stud. World Religions, Stony Brook, pp. 118–164. New York (1982)

    Google Scholar 

  31. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum StatisticaI Mechanics I: C*- and W*-Algebras Symmetry Groups Decomposition of States. Springer, Berlin (1987)

    Book  Google Scholar 

  32. Finkelstein, D.R.: Quantum Relativity: A Synthesis of the Ideas of Einstein and Heisenberg. Springer, Berlin (1996)

    MATH  Google Scholar 

  33. Zapatrin, R.R.: Incidence algebras of simplicial complexes. Pure Math. Appl. 11, 105–118 (2001). eprint math.CO/0001065

    MathSciNet  Google Scholar 

  34. Hiley, B.J.: Vacuum or Holomovement. In: Saunders, S., Brown, H.R. (eds.) The Philosophy of Vacuum, pp. 217–249. Clarendon Press, Oxford (1991)

    Google Scholar 

  35. Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367–387 (1948)

    Article  MathSciNet  ADS  Google Scholar 

  36. Aharonov, Y., Bergmann, P.G., Lebowitz, J.L.: Phys. Rev. 134, B1410 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  37. Kauffman, S.A.: Investigations. Oxford University Press, Oxford (2000)

    Google Scholar 

  38. Hiley, B.J.: In: Bowden, K.G. (ed.) Towards a dynamics of moments: The role of algebraic deformation and inequivalent vacuum states, Correlations. Proc. ANPA 23 104–134 (2001)

    Google Scholar 

  39. Dirac, P.A.M.: Spinors in Hilbert Space. Plenum Press, New York (1974)

    Book  Google Scholar 

  40. Kauffman, L.H.: Knots and Physics. World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

  41. Hiley, B.J.: Some Notes on Quantum Mechanics using Clifford Algebras (Available in pre-print form.)

    Google Scholar 

  42. Hiley, B.J., Callaghan, R.: The Clifford Algebra approach to Quantum Mechanics A: The Schrödinger and Pauli Particles (Available in pre-print form.)

    Google Scholar 

  43. Hiley, B.J., Callaghan, R.: The Clifford Algebra approach to Quantum Mechanics B: The Dirac Particle (Available in pre-print form.)

    Google Scholar 

  44. Penrose, R., Rindler, W.: Spinors and Space-time, vol. 1. Cambridge University Press, Cambridge (1984)

    Book  Google Scholar 

  45. Page, L.: A new relativity. Paper I. Fundamental principles and transformations between accelerated systems. Phys. Rev. 49, 254–268 (1936)

    Article  ADS  Google Scholar 

  46. Bondi, H.: Relativity and Common Sense. Dover, New York (1977)

    Google Scholar 

  47. Nakahara, M.: Geometry, Topology and Physics. Adam Hilger, Bristol (1990)

    Book  MATH  Google Scholar 

  48. Frescura, F.A.M., Hiley, B.J.: Geometric interpretation of the Pauli spinor. Am. J Phys. 49, 152–157 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  49. Ryder, L.H.: Quantum Filed Theory. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  50. Hiley, B.J.: Non-Commutative Geometry, the Bohm Interpretation and the Mind-Matter Relationship. In: Dubois, D.M. (ed.) Computing Anticipatory Systems: CASYS 2000–4th International Conference, pp. 77–88. AIP, New York (2001)

    Google Scholar 

  51. Bohm, D.: Wholeness and the Implicate Order. Routledge, London (1980)

    Google Scholar 

  52. Lawson, H.B., Michelsohn, M-L.: Spin Geometry. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  53. Brown, M.R., Hiley, B.J.: Schrödinger revisited: an algebraic approach. quantph/0005026

    Google Scholar 

  54. Bohm, D., Hiley, B.J., Kaloyerou, P.N.: An Ontological basis for the quantum theory: II -A causal interpretation of quantum fields. Phys. Reports 144, 349–375 (1987)

    Article  MathSciNet  Google Scholar 

  55. Bohm, D., Schiller, R., Tiomno, J.: A causal interpretation of the Pauli equation (A) and (B). Nuovo Cim. 1, 48–66 and 67–91 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  56. Hestenes, D., Gurtler, R.: Local observables in quantum theory. Am. J. Phys. 39, 1028–1038 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  57. Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, London (1993)

    Google Scholar 

  58. Connes, A.: Non-commutative Geometry. Academic Press, San Diego (1990)

    MATH  Google Scholar 

  59. Dirac, P.A.M.: The fundamental equations of quantum mechanics. Proc. Roy. Soc. A 109, 642–653 (1926)

    ADS  Google Scholar 

  60. Morris, A.O.: On a generalised clifford algebra. Quart. J. Math. 18, 7–12 (1967)

    Article  ADS  MATH  Google Scholar 

  61. Hiley, B.J.: Clifford Algebras. In preparation

    Google Scholar 

  62. Kilmister, C.W.: Eddington’s Search for a Fundamental Theory. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  63. Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover Publication, London (1960)

    Google Scholar 

  64. Crumeyrolle, A.: Orthogonal and Symplectic Clifford Algebras: Spinor Structures. Kluwer, Dordrecht (1990)

    Book  MATH  Google Scholar 

  65. de Broglie, L.: Non-linear Wave Mechanics: A Causal Interpretation. Elsevier, Amsterdam (1960)

    MATH  Google Scholar 

  66. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables, I. Phys. Rev. 85, 166–179 (1952); and II, 85, 180–193 (1952)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgment

I should like to thank in particular Bob Callaghan for his patience during the many discussions we had on various aspects of this subject. I would also like to thank Ernst Binz, Ray Brummelhuis, Bob Coecke, Maurice de Gosson and Clive Kilmister for their continual encouragement. Without Ray Brummelhuis’ generous support this work would not have reached the light of day.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.J. Hiley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-VerlagBerlin Heidelberg

About this chapter

Cite this chapter

Hiley, B. (2010). Process, Distinction, Groupoids and Clifford Algebras: an Alternative View of the Quantum Formalism. In: Coecke, B. (eds) New Structures for Physics. Lecture Notes in Physics, vol 813. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12821-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12821-9_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12820-2

  • Online ISBN: 978-3-642-12821-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics