Skip to main content

Cryoprotective Dehydration: Clues from an Insect

  • Chapter
  • First Online:

Part of the book series: Topics in Current Genetics ((TCG,volume 21))

Abstract

Arthropods have evolved a number of different adaptations to survive extreme environmental temperatures including, in some regions, over-wintering temperatures well below 0°C. One of the less common adaptations to surviving cold is that of cryoprotective dehydration, where the animal becomes almost anhydrobiotic with the loss of virtually all osmotically active water. In this chapter, we describe integrated studies utilising physiology, biochemistry and molecular biology to understand this phenomenon in the Arctic springtail (Megaphorura arctica) (formerly Onychiurus arcticus). These studies concentrate on the action of trehalose as a cryoprotectant, the production of antioxidants to reduce cell damage and changes in membrane composition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad S (1992) Biochemical defence of pro-oxidant plant allelochemicals by herbivorous insects. Biochem Syst Ecol 20:269–296

    Article  CAS  Google Scholar 

  • Ahmad S, Duval DL, Weinhold LC, Pardini RS (1991) Cabbage looper antioxidant enzymes: tissue specificity. Insect Biochem 21:563–572

    Article  CAS  Google Scholar 

  • Avonce N, Mendoza-Vargas A, Morett E, Iturriage G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109

    Article  PubMed  Google Scholar 

  • Bahrndorff S, Petersen SO, Loeschcke V, Overgaard J, Holmstrup M (2007) Differences in cold and drought tolerance of high arctic and sub-arctic populations of Megaphorura arctica Tullberg 1876 (Onychiuridae: Collembola). Cryobiology 55:315–323

    Article  PubMed  CAS  Google Scholar 

  • Bahrndorff S, Tunnacliffe A, Wise MJ, McGee B, Holmstrup M, Loeschke V (2008) Bioinformatics and protein expression analyses implicate LEA proteins in the drought response of colemmbola. J Insect Physiol 55:210–217

    Article  Google Scholar 

  • Bayley M, Petersen SO, Knigge T, Köhler HR, Holmstrup M (2001) Drought acclimation confers cold tolerance in the soil collembolan Folsomia candida. J Insect Physiol 47:1197–1204

    Article  PubMed  CAS  Google Scholar 

  • Benaroudj N, Lee DH, Goldberg AL (2001) Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276:24261–24267

    Article  PubMed  CAS  Google Scholar 

  • Bennett VA, Pruitt NL, Lee RE (1997) Seasonal changes in fatty acid composition associated with cold-hardening in third larvae of Eurosta solidaginis. J Comp Physiol B 167:249–255

    Article  CAS  Google Scholar 

  • Block W (1990) Cold tolerance of insects and other arthropods. Philos Trans R Soc Lond B Biol Sci 326:613–633

    Article  Google Scholar 

  • Block W, Worland MR (2001) Experimental studies of ice nucleation in an antarctic springtail (Collembola, Isotomidae). Cryobiology 42:170–181

    Article  PubMed  CAS  Google Scholar 

  • Block W, Webb NR, Coulson S, Hodkinson ID, Worland MR (1994) Thermal adaptation in the arctic collembolan Onychirus arcticus (Tullberg). J Insect Physiol 40:715–722

    Article  Google Scholar 

  • Cannon RJC, Block W (1988) Cold tolerance of microarthropods. Biol Rev 63:23–77

    Article  Google Scholar 

  • Clark MS, Thorne MAS, Purać J, Grubor-Lajšić G, Kube M, Reinhardt R, Worland MR (2007) Surviving extreme polar winters by desiccation: clues from arctic springtail (Onychiurus arcticus) EST libraries. BMC Genomics 8:475

    Article  PubMed  Google Scholar 

  • Clark MS, Thorne MAS, Purać J, Burns G, Hillyard G, Popovic Z, Grubor-Lajšić G, Worland MR (2009) Surviving the cold: molecular analyses of insect cryoprotective dehydration in the arctic springtail (Megaphorura arctica). BMC Genomics 10:328

    Article  PubMed  Google Scholar 

  • Clavaron-Mathews M, Summers CB, Felton GW (1997) Ascorbate peroxidase: a novel antioxidant enzyme in insects. Arch Insect Biochem Physiol 34:57–68

    Article  Google Scholar 

  • Coulson SJ, Hodkinson ID, Block W, Webb NR, Worland MR (1995a) Low summer temperatures – a potential mortality factor for high arctic soil microarthropods. J Insect Physiol 41:783–792

    Article  CAS  Google Scholar 

  • Coulson SJ, Hodkinson ID, Strathdee AT, Block W, Webb NR, Bale JS, Worland MR (1995b) Thermal environments of arctic soil microorganisms during winter. Arctic Alpine Res 27:364–370

    Article  Google Scholar 

  • Crowe JH, Crowe LM (1982) Induction of anhydrobiosis-membrane changes during drying. Cryobiology 19:317–328

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Crowe LM (1984) Effects of dehydration on membranes and membrane stabilization at low water activities. In: Chapman D (ed) Biological Membranes 5. Academic Press, London, pp 57–103

    Google Scholar 

  • Crowe JH, Crowe LM (1986) Water and carbohydrate interactions with membranes – studies with infrared-spectroscopy and differential scanning calorimetry methods. Methods Enzymol 127:696–703

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Crowe LM, Carpenter JF, Aurell Wistrom C (1987) Stabilisation of dry phospholipid bilayers and proteins by sugars. Biochem J 242:1–10

    PubMed  CAS  Google Scholar 

  • Crowe JH, Crowe LM, Carpenter JF, Rudolph AS, Wistrom CA, Spargo BJ, Anchordoguy TJ (1988) Interactions of sugars with membranes. Biochim Biophys Acta 947:367–384

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Hoekstra F, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    Article  PubMed  CAS  Google Scholar 

  • Dalton TP, Shertzer HG, Puga A (1999) Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol 39:67–101

    Article  PubMed  CAS  Google Scholar 

  • Denekamp NY, Thorne MAS, Clark MS, Kube M, Reinhardt R, Lubzens E (2009) Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genomics 10:108

    Article  PubMed  Google Scholar 

  • Elnitsky MA, Hayward SAL, Rinehart JP, Denlinger DL, Lee RE (2008) Cryoprotective dehydration and the resistance to inoculative freezing in the antarctic midge, Belgica antarctica. J Exp Biol 211:524–530

    Article  PubMed  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    PubMed  CAS  Google Scholar 

  • Fridovich I (1978) Biology of oxygen radicals. Science 201:875–880

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Hansen BH, Romma S, Garmo OA, Olsvik PA, Andersen RA (2006) Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels. Comp Biochem Physiol C 143:263–274

    CAS  Google Scholar 

  • Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu Rev Physiol 57:19–42

    Article  PubMed  CAS  Google Scholar 

  • Hermes-Lima M, Zenteno-Savin T (2002) Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comp Biochem Physiol C 133:537–556

    Google Scholar 

  • Holmstrup M (1992) Cold hardiness strategy in cocoons of the lumbricoid earthworm Dendrobaena octaedra (Savigny). Comp Biochem Physiol B 102:49–54

    Article  Google Scholar 

  • Holmstrup M, Sømme L (1998) Dehydration and cold hardiness in the arctic collembolan Onychiurus arcticus Tullberg 1876. J Comp Physiol B 168:197–203

    Article  Google Scholar 

  • Holmstrup M, Westh P (1994) Dehydration of earthworm cocoons exposed to cold: a novel cold hardiness mechanism. J Comp Physiol B 164:312–315

    Article  Google Scholar 

  • Holmstrup M, Bayley M, Ramløv H (2002) Supercoolor dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates. Proc Natl Acad Sci USA 99:5716–5720

    Article  PubMed  CAS  Google Scholar 

  • Kayukawa T, Chen B, Hoshizaki S, Ishikawa Y (2007) Upregulation of a desaturase is associated with the enhancement of cold hardiness in the onion maggot, Delia antiqua. Insect Biochem Mol Biol 37:1160–1167

    Article  PubMed  CAS  Google Scholar 

  • Lundheim R, Zachariassen KE (1993) Water balance in over-wintering beetles in relation to strategies for cold tolerance. J Comp Biochem Physiol 163:1–4

    Google Scholar 

  • Luzzati V, Husson F (1962) Structure and liquid-crystalline phases of lipid-water systems. J Cell Biol 12:207–219

    Article  PubMed  CAS  Google Scholar 

  • Marr AG, Ingraham JL (1962) Effect of temperature on composition of fatty acids in Escherichia coli. J Bacteriol 84:1260–1267

    PubMed  CAS  Google Scholar 

  • Michaud MR, Denlinger DL (2007) Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh fies (Sarcophaga crassipalpis): a metabolomic comparison. J Comp Physiol B 177:753–763

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin

    Google Scholar 

  • Oku K, Watanabe H, Kubota FS, Kurimoto M, Tsujisaka Y, Komori M, Inoue Y, Sakurai M (2003) NMR and quantum chemical study on the OHċ ċ ċπ and CHċ ċ ċO Interactions between Trehalose and Unsaturated Fatty Acids: Implication for the Mechanism of Antioxidant Function of Trehalose. J Am Chem Soc 125:12739–12748

    Article  PubMed  CAS  Google Scholar 

  • Pedersen PG, Holmstrup M (2003) Freeze or dehydrate: only two options for the survival of subzero temperatures in the arctic Enchytraeid Fridericia ratzeli. J Comp Physiol B 173:601–609

    Article  PubMed  CAS  Google Scholar 

  • Pellerone FI, Archer SK, Behm CA, Grant WN, Lacey MJ, Somerville AC (2003) Trehalose metabolism genes in Caenorhabditis elegans and filarial nematodes. Int J Parasitol 33:1195–1206

    Article  PubMed  CAS  Google Scholar 

  • Ring RA, Danks HV (1994) Desiccation and cryoprotection – overlapping adaptations. Cryoletters 15:181–190

    Google Scholar 

  • Ring RA, Riegert PW (1991) A tribute to RW Salt. In: Lee RE, Denlinger DL (eds) Insects at low temperature. Chapman and Hall, London, pp 3–16

    Chapter  Google Scholar 

  • Rudolf AS, Crowe JH (1985) Membrane stabilisation during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology 22:367–377

    Article  Google Scholar 

  • Sakamoto T, Bryant DA (1997) Temperature-regulated mRNA accumulation and stabilization for fatty acid desaturase genes in the cyanobacterium Synechococcus sp. strain PCC 7002. Mol Microbiol 23:1281–1290

    Article  PubMed  CAS  Google Scholar 

  • Salt RW (1957) Natural occurrence of glycerol in insects and its relation to their ability to survive freezing. Can Entomol 89:491–494

    Article  CAS  Google Scholar 

  • Salt RW (1961) Principles of insect cold hardiness. Annu Rev Entomol 6:55–74

    Article  Google Scholar 

  • Sinclair BJ, Vernon P, Klok CJ (2003) Insects at low temperature: an ecological perspective. Trends Ecol Evol 18:257–262

    Article  Google Scholar 

  • Sømme L (1995) Invertebrates in hot and cold arid environments. Springer, Berlin

    Book  Google Scholar 

  • Steele JE (1999) Activation of fat body in Periplaneta americana (Blattoptera: Blattidae) by hypertrehalosemic hormones (HTH): new insights into the mechanism of cell signalling. Eur J Entomol 96:317–322

    CAS  Google Scholar 

  • Storey KB, Storey JM (1991) Glucose-6-phosphate-dehydrogenase in cold hardy insects – kinetic-properties, freezing stabilization, and control of hexose-monophosphate shunt activity. Insect Biochem 21:157–164

    Article  CAS  Google Scholar 

  • Storey KB, Storey JM (1992) Natural freeze tolerance in ectothermic vertebrates. Annu Rev Physiol 54:619–637

    Article  PubMed  CAS  Google Scholar 

  • Suzuki YJ, Forman HJ, Sevanian A (1997) Oxidants as stimulators of signal transduction. Free Radic Biol Med 22:269–285

    Article  PubMed  CAS  Google Scholar 

  • Tiku PE, Gracey AY, Macartney AI, Benyon RJ, Cossins AR (1996) Cold-induced expression of Delta(9)-desaturase in carp by transcriptional and post-translational mechanisms. Science 271:815–818

    Article  PubMed  CAS  Google Scholar 

  • Valko M, Leibfrit D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  • Vega SE, del Rio AH, Bamberg JB, Palta JP (2004) Evidence for the up-regulation of stearoyl-ACP (A9) desaturase gene expression during cold acclimation. Am J Potato Res 81:125–135

    Article  CAS  Google Scholar 

  • Wharton DA, Goodall G, Marshall CJ (2003) Freezing survival and cryoprotective dehydration as cold tolerance mechanisms in the antarctic nematode (Panagrolaimus davidi). J Expt Biol 206:215–222

    Article  Google Scholar 

  • Worland MR (1996) The relationship between water content and cold tolerance in the arctic collembolan Onychiurus arcticus (Collembola: Onychiuridae). Eur J Entomol 93:341–348

    Google Scholar 

  • Worland MR, Block W (1986) Survival and water loss in some antarctic arthropods. J Insect Physiol 32:579–584

    Article  Google Scholar 

  • Worland MR, Block W (2003) Desiccation stress at sub-zero temperatures in polar terrestrial arthropods. J Insect Physiol 49:193–203

    Article  PubMed  CAS  Google Scholar 

  • Worland MR, Grubor-Lajsic G, Montiel PO (1998) Partial desiccation induced by sub-zero temperatures as a component of the survival strategy of the arctic collembolan Onychiurus arcticus (Tullberg). J Insect Physiol 44:211–219

    Article  PubMed  CAS  Google Scholar 

  • Zachariassen KE (1979) Mechanism of the cryoprotective effect of glycerol in beetles tolerant to freezing. J Insect Physiol 25:29–32

    Article  CAS  Google Scholar 

  • Zachariassen KE (1985) Physiology of cold tolerance in insects. Physiol Rev 4:799–832

    Google Scholar 

Download references

Acknowledgements

This paper was produced within the BAS GSAC BIOREACH/BIOFLAME core programmes and also contributes to the SCAR EBA programme. JP was sponsored by the EU Sleeping Beauty Consortium: Specific Targeted Research Project, Contract no 012674 (NEST). JP and GG-L are also funded by the MSTD grant 143034, awarded by the Republic of Serbia. The authors would like to thank NERC for access to the NERC Arctic Research Station (Harland Huset) at Ny-Ålesund and Nick Cox, the Arctic base commander. We would also like to thank Pete Convey for critical reading of the manuscript and Barbara Worland and Guy Hillyard for their help with animal collection in the 2007 and 2008 field seasons respectively and Zeljko Popovic for his help with the Q-PCR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melody S. Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Worland, M.R., Grubor-Lajšić, G., Purać, J., Thorne, M.A.S., Clark, M.S. (2010). Cryoprotective Dehydration: Clues from an Insect. In: Lubzens, E., Cerda, J., Clark, M. (eds) Dormancy and Resistance in Harsh Environments. Topics in Current Genetics, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12422-8_9

Download citation

Publish with us

Policies and ethics