Skip to main content

Perfect Matching for Biconnected Cubic Graphs in O(n log2 n) Time

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5901))

Abstract

The main result of this paper is a new perfect matching algorithm for biconnected cubic graphs. The algorithm runs in time O(n log2 n). It is also possible, by applying randomized data structures, to get O(n logn loglog3 n) average time. Our solution improves the one given by T. Biedl et al. [3]. The algorithm of Biedl et al. runs in time O(n log4 n). We use a similar approach. However, thanks to exploring some properties of biconnected cubic graphs we are able to replace complex fully-dynamic biconnectivity data structure with much simpler, dynamic graph connectivity and dynamic tree data structures. Moreover, we present a significant modification of the new algorithm which makes application of a decremental dynamic graph connectivity data structure possible, instead of one supporting the fully dynamic graph connectivity. It gives hope for further improvements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, H., Blum, N., Mehlhorn, K., Paul, M.: Computing a Maximum Cardinality Matching in a Bipartite Graph in Time \(O(n^{1.5}\sqrt{m/\log n})\). Information Processing Letters 37, 237–240 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Biedl, T.C.: Linear Reductions of Maximum Matching. In: SODA 2001, pp. 825–826 (2001)

    Google Scholar 

  3. Biedl, T., Bose, P., Demaine, E., Lubiw, A.: Efficient Algorithms for Petersen’s Matching Theorem. Journal of Algorithms 38, 110–134 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Frink, O.: A Proof of Petersen’s Theorem. The Annals of Mathematics, Series 2 27(4), 491–493 (1926)

    Article  MathSciNet  Google Scholar 

  5. Henzinger, M., King, V.: Fully Dynamic 2-Edge Connectivity Algorithm in Polylogarithmic Time per Operation. Technical Note, Digital Equipment Corp., Systems Research Ctr. (June 12, 1997)

    Google Scholar 

  6. Holm, J., De Lichtenserg, K., Thorup, M.: Poly-Logarithmic Deterministic Fully-Dynamic Algorithms for Connectivity, Minimum Spanning Tree, 2-Edge and Biconnectivity. Journal of the ACM (JACM) 48, 723–760 (2001)

    Article  MATH  Google Scholar 

  7. Lovasz, L., Plummer, M.D.: Matching Theory. North-Holland Publishing Co., Amsterdam (1986)

    MATH  Google Scholar 

  8. Micali, S., Vazirani, V.V.: An \(O(\sqrt{n}m)\) Algorithm for Finding Maximum Matching in General Graphs. In: Proceedings of FOCS 1980, pp. 17–27. IEEE, Los Alamitos (1980)

    Google Scholar 

  9. Petersen, J.: Die Theorie der regulären Graphs. Acta Mathematica 15, 193–220 (1891)

    Article  MathSciNet  Google Scholar 

  10. Karpiński, M., Rytter, W.: Fast Parallel Algorithms for Graph Matching Problem. Oxford University Press, Oxford (1998)

    Google Scholar 

  11. Schrijver, A.: Combinatorial Optimization – Polyhedra and Efficiency. Parts II and III. Springer, Berlin (2003)

    Google Scholar 

  12. Schrijver, A.: Bipartite Edge Coloring in Om) Time. SIAM Journal on Computing 28(3), 841–846 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sleator, D.D., Tarjan, R.E.: A Data Structure for Dynamic Trees. In: Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, pp. 114–122 (1981)

    Google Scholar 

  14. Tarjan, R.E.: Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1983)

    Google Scholar 

  15. Thorup, M.: Near-Optimal Fully-Dynamic Graph Connectivity. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 343–350 (2000)

    Google Scholar 

  16. Thorup, M.: Decremental Dynamic Connectivity. In: Proceedings of the 8th ACM Symposium on Discrete Algorithms (SODA), pp. 305–313 (1997)

    Google Scholar 

  17. Mucha, M.: Finding Maximum Matchings via Gaussian Elimination. PhD Thesis, Warsaw University, Faculty of Mathematics, Informatics and Mechanics

    Google Scholar 

  18. Harvey, N.J.A.: Algebraic Algorithms for Matching and Matroid Problems. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology

    Google Scholar 

  19. Greenlaw, R., Petreschi, R.: Cubic Graphs. ACM Computing Surveys (CSUR) 27(4), 471–495 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Diks, K., Stanczyk, P. (2010). Perfect Matching for Biconnected Cubic Graphs in O(n log2 n) Time. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds) SOFSEM 2010: Theory and Practice of Computer Science. SOFSEM 2010. Lecture Notes in Computer Science, vol 5901. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11266-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11266-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11265-2

  • Online ISBN: 978-3-642-11266-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics